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Figure 1: Our system consists of a smartwatch app that streams IMU signals and obfuscation requests to an edge device, which
runs our user-device association algorithm. This system operates under the following standard security assumptions: all
wearable devices are fully compatible with the local camera system, and data on the edge device is secure from unauthorized

access and cyber-attacks prior to transmission to the cloud.

ABSTRACT

Cameras are in their golden age due to recent advances in visual Al
techniques that significantly extend the applicability and accuracy
of vision-based applications including healthcare, entertainment,
and security. In public environments, individuals usually have dif-
ferent and changing privacy preferences against their visual infor-
mation being shared with other entities. To accommodate these
varying user needs for visual privacy, we created Invisibility Cloak,
a camera obfuscation technique leveraging inertial signals collected
from smartwatches to guide an edge device to remove visual infor-
mation from camera recordings before they are streamed out for
cloud-based inferences. Specifically, a smartwatch user can select
an obfuscation level that fits their privacy preference in that context
and cameras in the environment will use smartwatch signals to
identify that user and remove visual information associated with
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the user. On the conceptual level, our system demonstrates a pri-
vacy design rationale which removes information to be shared with
a broader internet infrastructure (i.e., cloud) by providing more
information to a trusted local camera system (i.e., camera sensor +
edge computing device). We developed a custom data-association
pipeline and collected data from real-world configurations. Eval-
uation of our pipeline indicates a user identification accuracy of
95.48% among 10 individuals when our system is provided with
only 2 seconds of data.
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1 INTRODUCTION

Vision Al is becoming an increasingly practical approach to ad-
dress the workforce shortage by freeing human operators for safer
and more creative tasks. Recent advances in large language models
(LLM) have extended the applicability as well as lowered the engi-
neering efforts to apply vision Al in a wide array of use scenarios —
safety, security, healthcare, entertainment, education, and beyond.
We have begun to see a huge wave of vision systems to be deployed,
especially in public environments, for their readily available use
cases. However, user privacy in the age of vision Al has been a
critical problem that impedes Al from being even more useful, due
to the lack of tools to support user privacy in vision systems.

People have different privacy preferences as vision Al prevails
[66]. One might need a camera to log their activity, recommend-
ing the best time to inject insulin, while others do not want their
outfit with an irritating propaganda slogan to be possibly leaked
and posted on social media. Accommodating various user privacy
preferences is difficult. As contexts change, the same user may have
varying privacy preferences, making it even more challenging to
accommodate personalized privacy configurations. For a long time,
camera utilization has been approached in a binary manner — either
deploying cameras in vision applications where privacy concerns
are minimal or banning them entirely in scenarios where privacy
is a major concern.

To address the tension between utility and privacy in camera-
enabled environments, recent research has proposed obfuscation
techniques that allow cameras to automatically identify and remove
privacy-sensitive information from their field of view. For instance,
selective obfuscation methods leverage thermal signals from the
human body to detect and redact sensitive pixels before any data is
transmitted beyond the local device [24, 34]. These systems aim to
preserve application-relevant information while eliminating poten-
tially identifying content. Such approaches align with the principle
of obscurity — a fundamental privacy mechanism that makes cer-
tain information less visible or accessible to unintended audiences.
In a world saturated with digital data, obscurity enables individuals
to participate in public or digital spaces while minimizing the risk of
being tracked, profiled, or exposed. It acts as a subtle cloak, offering
protection without requiring users to withdraw entirely. However,
maintaining obscurity is increasingly difficult in the face of per-
vasive IoT systems and Al-driven analytics. Existing obfuscation
techniques remain limited in their ability to support personalized
privacy configurations that adapt to each individual’s context, high-
lighting the need for user-centric, dynamic approaches to visual
privacy.

To support finer-grained support for privacy preference down to
an individual level, we propose Invisibility Cloak, a visual-inertial
system using IMU signals from smartwatches, a popular wearable
device, to allow cameras to identify and obfuscate users according
to their privacy preferences. Our system acts as a cloak, allowing
people to navigate these spaces with a reduced risk of their actions
being monitored, analyzed, or exploited. Individual-level privacy
accommodation in shared visual space helps individuals maintain
privacy without completely withdrawing from digital or public
spaces. And thus our system allows individuals to enjoy the benefits
of digital interactions without fully exposing their personal data,
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supporting a level of anonymity that can protect users from identity
theft, tracking, or unwanted marketing.

Specifically, smartwatches in our system yield arm movements
of their users which oftentimes exhibit uniqueness as users can
statically pose their body differently (e.g., standing with both hands
down, vs. sitting with arm resting on a table) or engage in different
activities (e.g., typing vs. drinking) that lead to different kinetic
signatures. Our system identifies these unique biometrics for user
identification, with a custom matching pipeline based on cross-
modal contrastive learning. We conducted a series of evaluations,
including synthesized multi-user data consisting of individually
collected data from 10 users scripted with various daily activities
at In-Lab and In-the-Wild locations. We also conducted a real-time
multi-user evaluation. Both evaluations indicated promising results.
For synthesized data, the average precisions of three evaluation con-
figurations (i.e., within-user, cross-user, and cross-scene), including
various activities and locations, exceed 94%, and no specific preci-
sion falls below 93%. For real-time multi-user evaluation, average
precisions exceed 89% across all configurations, including unseen
camera positions and activities. We also conducted investigations
on window length, handedness, camera position, seen vs. unseen
activities, usability study, and edge computing deployment to drive
further insights into our proposed methodology.

Our contributions are as follows:

o Implementation of a novel interaction scenario where smart-
watches serve as privacy safeguards, guiding camera obfus-
cation based on individual privacy preferences.

o New user-device association pipeline based on contrastive
learning, which demonstrated superior accuracy to the state
of the art.

o Evaluation of system using a data synthesis approach in con-
cert with live multi-user data collection, yielding insightful
knowledge about current and future works.

2 RELATED WORK
2.1 Video Obfuscation Techniques

Privacy in video analytics can be protected using obfuscation tech-
niques applied before, during, or after recording. These methods can
prevent sensitive data exposure while preserving content utility.
Privacy risks can be mitigated at the physical level by prevent-
ing unauthorized recording, such as using mechanical lids that
automatically/manually cover the camera [49, 53, 61] or by apply-
ing optical masking techniques on the sensor level [67]. Several
techniques obfuscate sensitive information during recording. For
example, [71] proposed a novel Privacy-sensitive Objects Pixela-
tion (PsOP) framework that can automatically perform personal
privacy filtering during live video streaming. The specified or sensi-
tive information is directly removed before storage or transmission
[51, 59] or only recording the designated target [27]. In wearables,
privacy-aware eye tracking [52] uses differential privacy to prevent
re-identification while maintaining functional gaze data.

Closer to our work, prior works investigated various post-capture
obfuscation techniques. Traditional blurring and pixelation [16, 32,
47] reduce privacy risks but degrade usability. Selective obfuscation
[2] allows customizable filtering of sensitive objects, but struggles
with dynamic contexts. To enable personalized privacy, Cardea
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[50] employs context-aware privacy profiles that adjust in real time,
with gesture-based overrides. In IoT environments, [15] enables face
anonymization in video streams for protecting personal informa-
tion. In online conferencing, ZoomP3 [55] protects privacy-sensitive
participants while allowing recordings to be shared. Al-driven tools
[65] help blind users obfuscate private content in photos. Finally,
PrivacyLens [24] integrates RGB and thermal imaging to remove
personally identifiable information (PII) before video leaves the
device, ensuring privacy without post-processing artifacts.

2.2 Wearable Enabled Identification and
Obfuscation

Additionally, the sensing scheme of our work intersects literature
leveraging wearables to enable user identification. Wearable devices
offer a promising platform for privacy-aware user identification by
sensing unique physiological and behavioral traits.

Motion-based approaches, such as Nod to Auth [60] and HCR-
Auth [20], authenticate users based on biometric data gathered
through head gestures via IMU sensors, offering intuitive inter-
actions in VR/AR environments. Electrical sensing methods, like
those proposed by Cornelius et al. [12], exploit body impedance to
capture internal biometric features without relying on visual input.
Ear-based techniques such as EarEcho [19] and Voice In Ear [18]
utilize the anatomical structure of the ear and body-conducted vocal
vibrations for in-ear or bone-conduction authentication. Gait-based
approaches [3] using ultra-wideband wearables enable passive iden-
tification by measuring inter-device body distances, requiring no
explicit user input.

Recent work also explores how wearables support sensor ob-
fuscation and privacy protection. Blinder [63] proposes a feder-
ated learning-based approach for sensor data anonymization, using
variational autoencoders and discriminators to obscure private at-
tributes while retaining public utility. Similarly, [64] introduces
diffusion-based obfuscation frameworks by adding synthetic sensor
data to the original one. In this case, the useful data is reserved and
the sensitive information is obscured. Moore et al. [38] proposed
an approach that anonymizes sensitive information captured by
wearable cameras to enable fall detection while mitigating ethical
and privacy concerns. These diverse strategies reflect the growing
emphasis on unobtrusive, user-centric, learning-based, and context-
aware mechanisms that dynamically balance privacy and utility.

2.3 Data Association Across Modalities

Many approaches leverage vision tracking, IMU, and wireless sig-
nals (e.g., WiFi) to facilitate fast and accurate localization of users,
with trade-offs in accuracy, availability, and ease of deployment.
One of the most common approaches is to integrate vision track-
ing with wireless signals. ViTag [9] and Vi-Fi [33] link bounding
box sequences from vision trackers with IMU and Wi-Fi FTM data.
RFCam [11] improves robustness by fusing Wi-Fi CSI with video
analytics to match mobile devices to users in video footage. Simi-
larly, EyeFi [17] aligns Wi-Fi motion trajectories with camera data,
enabling rapid, non-intrusive identification. IMU2CLIP [37] fur-
ther enhances user recognition by aligning IMU motion data with
egocentric video and text narrations through contrastive learning.
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Who Goes There [35] identifies users by matching the silhouette
video clips with accelerometers in a multi-person environment.

Our data-association approach is related to prior motion-based
user-device association techniques. IDIoT [6] identifies wearable
devices attached to different parts of the user’s body. It associ-
ated camera-based pose data with IMU signals from wearables on
limbs such as the arms and legs. Their algorithm, based on pairwise
alignment optimization, was evaluated using a public dataset and
demonstrated promising results. The Martini Synch [28] presents
a pairing mechanism also using IMU signals when two devices
perform the same movements. Closest to our work are systems that
identify users using their IMU signals under a camera. Tong et al.
[58] propose a multi-camera user identification system in which
smartphones are worn on users’ chests as wearable IMU devices.
Henschel et al. [22] present a system that uses visual-inertial data to
match and track multiple users in dynamic outdoor environments
(e.g., during soccer games or cross-walking), with the IMU sensor
attached at the users’ hip height. Sun et al. [54] introduce a visual-
inertial fusion method to identify the single user among multiple
users who is holding a smartphone embedded with IMU sensors.
These systems assume that users follow distinct trajectories and
have been primarily evaluated in outdoor environments where
users have enough space for separate and continuous movement.
They may struggle in indoor scenarios where movements are more
free-form, subtle, or similar among users. In contrast, our system
uniquely leverages a smartwatch for user identification, achieving
superior performance through a novel learning-based data asso-
ciation pipeline despite nuanced user movements. To the best of
our knowledge, no prior work in data association has leveraged
smartwatches for camera obfuscation or investigated their utility
and trade-offs across real-world scenarios, highlighting the novelty
and contribution of our system.

3 SYSTEM DESIGN

Our system consists of two stages. The first stage is user reidentifi-
cation in shared environments, which establishes the association
between users and their devices while also determining which user
sent which obfuscation requests. The second stage is personalized
video obfuscation, which introduces hierarchical obfuscation op-
tions, allowing users to customize their privacy settings based on
their preferences and specific situations. Both stages happen on an
edge Al device located near the camera, before the processed data
is streamed out of the user’s proximity or stored for longer terms.
These two stages are implemented through three parallel threads:
one receives IMU signals from smartwatches, the second listens
for obfuscation requests from individuals, and the third computes
user-device associations and applies video obfuscation based on
the processed results and received requests. Further details of these
threads can be found in Section 4. Below we list our design goals
which have been carefully considered in the selection of signals to
utilize and devices that generate these signals when developing our
system:

e D1: our system should apply to the most common vision
devices and use commodity devices for scalability.

e D2: our system should differentiate nuanced differences in
user motions, allowing swift and accurate user re-identification.
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e D3: personalization of obfuscation should be accommodated
by our system providing users with various levels for camera
obfuscations.

e D4: obfuscation level should be easily adjustable by the user
to quickly adapt privacy protection across user contexts.

3.1 User Re-Identification in Shared
Environments

Various modalities have been explored for associating individuals
with their corresponding data in shared environments. Some pre-
vious work [9, 33, 44] utilizes depth cameras, which provide 3D
information and can significantly improve user localization. How-
ever, most surveillance infrastructure only uses RGB cameras, and
depth information is often difficult to obtain. Other studies leverage
WiFi signals for identity association and localization [1, 17, 29, 46].
These systems, however, typically require specific hardware setups,
such as WiFi signal receivers installed in the environment. More-
over, indoor spaces with complex layouts or furniture can introduce
multipath effects in WiFi signals, which degrade association accu-
racy. GPS has also been used to associate devices with individuals
[36], but it struggles to provide high resolution in small or crowded
areas. Bluetooth, RF, and audio-based approaches [25, 40-42] offer
finer granularity than GPS but are limited in noisy or cluttered
environments.

Given these limitations, we adopt a camera-IMU association
strategy, leveraging inertial signals from wearables, particularly
smartwatches, to support user identification and localization. As
demonstrated in prior work [10, 21, 22, 57], IMUs provide a reli-
able source of movement data that naturally aligns with visual
observations. Unlike external signal-based systems, IMUs are the
most common sensor on smartwatches, an increasingly popular
and ubiquitous commodity device (D1). These IMUs are physically
worn on the user’s wrist, capturing motion signatures that precisely
correspond to individual activities and body dynamics, even for
those with minute movements. This tight coupling between the
device and the user ensures a higher-fidelity identity association
signal (D2).

3.2 Personalized Data Obfuscation

In shared environments such as offices, campuses, or public build-
ings, users often hold varying expectations about how their data
should be processed and protected. Unlike in isolated settings,
shared spaces require negotiation and compromise to ensure fair-
ness among all users [70]. Although some systems, such as [39],
provide multiple levels of video obfuscation, they lack the ability
to identify users within shared environments, limiting their effec-
tiveness in enforcing user-specific privacy preferences. To address
this limitation, surveillance systems must support flexible, indi-
vidualized privacy configurations that can accommodate diverse
user needs without introducing conflicts among co-located indi-
viduals [14]. According to Section 3.1, once users and devices are
correctly associated, our system should accurately identify and
localize individuals who initiate requests. Building on this founda-
tion, we propose a hierarchical video obfuscation framework that
allows users to customize how their visual presence is represented,
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while preserving Vision A’s utility for situational awareness and
analytics for other users (D3).

In our proposed system, we define five hierarchical levels of video
obfuscation, enabling users to choose a privacy configuration that
aligns with their needs and environmental context. Figure 1 (right)
illustrates the visual effects of each obfuscation level, demonstrating
how the system dynamically adjusts the privacy granularity based
on user preference. These levels balance the trade-off between data
utility and personal privacy:

Raw The video is captured, stored, and transmitted without any
modification. This level is suitable for fully consenting environ-
ments where high-fidelity signals are necessary.

Masking Whole body regions are detected using YOLO-based
segmentation and overlaid with solid masks. This conceals identity-
revealing features while maintaining spatial and movement context.

Blurring Whole body regions are blurred to obscure identifiable
characteristics while preserving motion and activity patterns as
well as some color information from clothes.

Inpainting The individual is removed from the video frame and
the background is synthetically filled in. This provides the highest
level of privacy by eliminating visual indicators of a user’s presence.

Skeleton Overlay After inpainting, a skeletal pose representa-
tion is rendered in place of the user. This enables functional activity
monitoring without exposing identifiable appearance features.

3.3 Privacy-Utility Trade-offs and Operational
Validity

User privacy needs are often dynamic, changing with context, time,
and location. In this case, individuals may have different require-
ments for privacy protection depending on the trade-offs between
privacy and vision-based Al functionality. For instance, a user might
pick Skeleton in a yoga class where their body postures need to be
logged for educational purposes. In contrast, the same user may
prefer Inpainting for stronger identity anonymity when entering
a grocery store using vision Al to track inventories. Invisibility
Cloak is built on the principle that personal privacy protection and
Al-driven functionality can coexist, allowing vision-based Al to
maintain core functionality while respecting individual privacy
preferences. For instance, skeleton-level obfuscation only keeps
essential structural information required for applications like fall
detection or activity monitoring, while removing sensitive features
like nudity or facial expressions.

To support real-time responsive and personalized control, we
decided to accommodate users with an intuitive smartwatch in-
terface (Figure 1, left), designed and implemented on the Google
Pixel Watch 2. This smartwatch serves a dual purpose: it transmits
IMU signals for identification and localization, and it allows users
to send personalized privacy requests to nearby IoT devices. Once
users send their desired obfuscation request, the edge device ap-
plies the selected obfuscation to their visual representation in the
video in real-time (D4). Note that each individual is segmented and
processed independently, enabling personalized obfuscation even
when multiple users appear in the same scene.

Each obfuscation level inherently involves trade-offs between
utility and privacy. For example, while Raw data provides the high-
est fidelity for behavior analysis, it exposes all visual identifiers.
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On the other hand, Inpainting and Skeleton provide strong privacy
guarantees for individuals while still retaining adequate contex-
tual information to support many vision-based Al tasks. Invisibility
Cloak thus offers a flexible mechanism for managing visual infor-
mation disclosure. By addressing both individual and contextual
privacy needs, it facilitates broader adoption of obfuscation tech-
niques within existing surveillance infrastructures, supporting both
functionality and privacy in real-world deployments.

4 SYSTEM IMPLEMENTATION

4.1 Self-Supervised Cross-Modality Contrastive
Learning

In the previous Section 3.1, we determined to use IMU recordings
and RGB video streams to perform user-device associations. How-
ever, these two modalities originate from fundamentally different
sensory inputs — one capturing motion through inertial measure-
ments and the other through visual observations. The disparity in
data representation poses a challenge in aligning them within a
shared feature space. To address this, we introduce a self-supervised
cross-modality contrastive learning framework to facilitate the as-
sociation. Note that contrastive learning has emerged as a power-
ful approach for aligning unlabeled data from different modalities
[13, 37, 45], and has been first utilized for user-device association
through our system. The details of the feature encoders, contrastive
loss function, and the cross-modal association mechanism are dis-
cussed subsequently.

4.1.1  Feature Encoding for IMU and RGB Sequences. As a first step,
we employ feature encoders to extract representations for each
modality. The encoder structures for each modality are shown in Fig-
ure 2. For IMU data, we utilize linear accelerometer and gyroscope
recordings as input to capture the user’s motion patterns. For RGB
streams (i.e., video), we first apply the state-of-the-art YOLO11x
[26] to extract bounding boxes and body keypoints, specifically fo-
cusing on the wrists, elbows, and shoulders. These bounding boxes,
along with the corresponding arm keypoints, are then processed by
the video encoder, which transforms the spatial pose information
into feature representations.

IMU Encoder In Invisibility Cloak, the IMU input contains the
linear acceleration and gyroscope data recorded via smartwatches.
The IMU Encoder consists of three main components: group nor-
malization, convolutional blocks, and a bidirectional GRU network.
Figure 2 (left) illustrates the IMU Encoder architecture. We set the
number of groups in group normalization to 2, corresponding to
the two types of signals—linear acceleration and gyroscope. Each
convolutional block applies a 2D convolution with a kernel size of
3, followed by batch normalization, a ReLU activation function, and
dropout for regularization. The extracted spatial features are then
passed through a bidirectional GRU to model temporal dependen-
cies.

Video Encoder The video encoder extracts movement-based
features from RGB video frames by detecting individuals present.
Each frame in the video stream is processed using a YOLO11x pose
detection model to identify keypoints corresponding to body joints
and the whole body bounding boxes. Since the smartwatch is worn
on the wrist, keypoints from other parts of the body (e.g., legs or
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Figure 2: Feature encoder architectures for IMU and video
modalities. T represents the number of frames in each track-
let. N denotes the number of individuals transmitting IMU
signals to the edge device, and M denotes the number of indi-
viduals detected in the last frame of the current tracklet. The
dimensions of the input vectors are as follows: d; for IMU
signals, d;. for arm keypoints, and dj, for bounding boxes. The
output feature dimensionalities are f; for the IMU encoder
and f, for the video encoder.
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head) may introduce confusion. Therefore, we specifically focus on
tracking the wrist, elbow, and shoulder joints, as these are most
aligned with the smartwatch’s movement.

To capture dynamic motion information from each individual,
the video encoder first computes motion vectors by measuring how
the positions of joints change between consecutive frames. Since
pose estimation can be susceptible to noise from shaking, occlusion,
or misdetections, some keypoints are not as reliable. To address this,
we designed a confidence-weighting mechanism that prioritizes
keypoints with higher confidence scores to mitigate this issue. The
same strategy is also applied to bounding boxes, ensuring that only
trustworthy detections influence the motion tracking. After this
processing, the concatenated motion data calculated with keypoints
and bounding boxes is fed as input for further processing.

Following that, we adopt a video encoder architecture similar
to the one used for IMU signals but with separate branches for
bounding boxes and keypoints. The architecture of the video en-
coder is displayed in Figure 2 (right). For the keypoints, we set the
number of groups in group normalization to 3, corresponding to
the three types of keypoints (wrist, elbow, and shoulder). Group
normalization is not applied to the bounding box branch, as the
bounding box features are treated as a single, unified entity rather
than grouped components. Each branch then passes through its
own set of convolutional blocks. The extracted features from the
keypoints and bounding boxes are fused using a fully connected
layer before being fed into GRU layers for temporal modeling. The
final video embeddings are a compact representation for each de-
tected person in the video, summarizing their visual and motion
characteristics, and these embeddings are then used for association
with IMU embeddings.

4.1.2  Contrastive Loss. Data association requires aligning features
encoded from different modalities within a shared latent space. To
achieve this, we adopt a linear projection strategy inspired by CLIP
[37] that maps both IMU and video features onto a unit hypersphere,
where the cosine similarity can be directly computed for efficient
association. As illustrated in Figure 3, we implement an IMU pro-
jection layer and a video projection layer that transform the IMU
and video embeddings into aligned representations. Each projected
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Figure 3: User-device association model architecture.

IMU-video feature pair is labeled as either positive (i.e., matched
IMU and video signals from the same user) or negative (unmatched
signals). To train the model, we apply contrastive learning: positive
pairs are drawn from aligned IMU and pose embeddings, while all
other combinations serve as negative samples. During the model
training, we employ the symmetric InfoNCE loss [43] as the objec-
tive function. It encourages the model to learn robust cross-modal
associations by pushing matched IMU and video embeddings closer
together while pulling apart unmatched ones.

4.2 User-Device Association via Bipartite Graph

Once the cross-modal representations from the IMU and video en-
coders are aligned in the joint latent space, we establish associations
between them using a bipartite graph matching approach.

Let N be the number of IMU streams and M be the number of
video tracklets detected within the current time window. Of note
that N may not necessarily equal M, as some individuals may not
be transmitting IMU, or users who are transmitting data may be
temporarily out of the camera’s field of view. We first compute the
cosine similarity matrix § € RN*M between each IMU embedding
and video embedding, where each element in S quantifies how
well each IMU embedding matches with each video embedding.
The association problem is then formulated as a bipartite graph
matching problem [56]. In this graph G = {I,V, E}, the nodes I
correspond to the IMU embeddings and the nodes V represent
video embeddings, with edge E weights given by the similarity
scores. Our objective is to find an optimal one-to-one matching
that maximizes the total similarity across all paired nodes. This
matching can be efficiently solved using the Hungarian algorithm
(also known as the Kuhn-Munkres algorithm) [30]. The algorithm
finds the set of pairs that maximizes the overall similarity score as
the sum of the similarity scores of all pairs in the matching.

4.3 Video Obfuscations

As detailed in the previous section, our system supports 5 levels
of video obfuscation options—Raw, Blurring, Masking, Inpainting
with Skeleton Overlay, and Inpainting only—to accommodate diverse
privacy preferences for people in different environments. In this
section, we describe how these obfuscation approaches are imple-
mented to enable real-time processing in edge devices in detail.
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For lightweight and efficient obfuscation, Blurring and Masking,
we leveraged traditional computer vision techniques that operate
directly on the segmented human body areas obtained from the
YOLO11x model. For scenarios requiring more advanced privacy
protection, such as Inpainting and Skeleton Overlay, we employ deep
learning-based techniques that provide better context preservation.

Masking In the masking approach, a solid occlusion color (e.g.,
white or a user-defined hue) is applied to the segmented region. This
is achieved by replacing the pixel values within the mask with the
occlusion color, thereby concealing the user’s identity (including
face, body shapes, and clothing information) while preserving the
overall scene context. The operation is implemented via OpenCV
[7] built-in functions to ensure minimal latency.

Blurring Blurring is implemented by applying a box filter over
the segmented region. Typically, a kernel size of 101x101 is used
to effectively smooth out fine details while retaining coarse mo-
tion and structural information. This filter convolves the masked
area with a uniform kernel, ensuring that identifying features are
obscured while the motion patterns are still preserved.

Inpainting The system runs a lightweight generative model
called Mobile Inpainting GAN (MI-GAN) [48] when a user requests
inpainting-based options. This model was pre-trained on the Places2
dataset [69] and is optimized for real-time, high-quality, and com-
putationally efficient image inpainting. In the first stage, the seg-
mentations of target users are determined for each frame. These
segmentations serve as masks and are fed into the model together
with the original frames. The model then erases the target users and
reconstructs the background that was previously obscured by them.
By processing frames individually and continuously, the system
generates a video in which the selected individual is entirely erased,
creating an effect similar to an invisibility cloak reminiscent of that
depicted in Harry Potter, which inspired our system name.

Skeleton Overlay For this obfuscation option, the system first
applies inpainting to remove the user from the frame. Then, a
skeletal structure is overlaid on the inpainted image with pose
keypoints extracted during the tracking process. The skeleton is
rendered with color-coded lines, preserving the dynamics of the
user’s movement but removing any identifiable features.

4.4 Modality Synchronization and Truncation

Invisibility Cloak involves two modalities: RGB videos and IMU
signals. However, they are recorded at different sampling rates.
Video is recorded at 30 frames per second (FPS), while the IMU
sensors operate at 50 Hz. To align these rates, we first extract the
timestamp for each video frame from its metadata and then identify
the closest corresponding IMU measurement based on its timestamp.
After this process, the IMU recordings are downsampled from 50
Hz to 30 Hz, aligning with the video FPS for further processing. The
durations of each user’s performance under the same scenario are
different. Therefore, merging all users’ recordings can lead to some
segments where only one user and one smartwatch are present,
especially in the last several frames. In such cases, association is
unnecessary. To address this, we only keep the synthesized multi-
user video and IMU streams where at least three users are present in
the scene. Then the IMU recordings and synthesized video frames
are segmented into tracklets - sliding windows of fixed length T
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with an overlap of T—1 frames. Within each tracklet, we estimate the
association at the final frame (frame T) by aggregating information
from the preceding T—1 frames. The association is performed frame-
by-frame as the window moves along the sequences. Intuitively, a
smaller T allows the system to respond more quickly when a user
initiates a video obfuscation request. Here, the value of T was set
to 60, corresponding to a delay of 2 seconds. In practice, to prevent
the leakage of privacy-sensitive video information, an edge device
could withhold video for this short duration before streaming it to
the cloud for further processing. For storage purposes, this brief
delay has no impact. We further explore the effect of varying T on
system performance in the next section.

5 DATA COLLECTION

This section details the data collection process, including participant
recruitment, experimental setup, and data acquisition procedures in
both fixed (In-Lab) and real-world (In-the-wild) environments. We
also describe the data collection protocol and the synthetic dataset
constructions for model training and evaluation.

5.1 Experiment Setup

The dataset includes two types of environmental conditions. The
In-Lab study was conducted in a laboratory area of approximately
80 m?. The In-the-Wild study involved a variety of real-world en-
vironments with natural, lived-in settings. Specifically, these envi-
ronments were the participants’ homes, including kitchens, dining
rooms, and living rooms. In the In-Lab environment, the camera
was mounted on a tripod, which was 1.5 meters above the ground.
These camera angles were kept consistent across all participants.
In the In-the-Wild environments, one camera was installed in each
location. Since these were personal living spaces, the camera angle
varied depending on the room layout. Across all environments,
cameras were placed at an approximate height of 1.5 meters from
the floor.

In the In-Lab environment, we recorded activities including ones
commonly found in office spaces, classrooms, physical movement
sequences, and general environment-independent gestures such
as adjusting glasses and touching hair; in the In-the-Wild environ-
ments, we recorded activities natural to these environments such
as cooking, cleaning, and watching TV. Figure 4 displays example
scenes from both environmental conditions. Participants were in-
structed to perform the activities as naturally as they would in their
daily lives. This setup aimed to capture real-world variations in
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surveillance perspectives and user behaviors in natural settings.
Detailed scenario and activity descriptions are provided in Appen-
dix A.

5.2 Participants and Procedures

We recruited 10 participants (4 females), each of whom performed
the predefined activities following given instructions. During the
sessions, the movements of the participants were recorded simul-
taneously using wearable IMU sensors and RGB cameras. The col-
lected IMU data and RGB videos were stored in the smartwatch and
camera, respectively. All 10 participants attended the In-Lab study.
However, for the In-the-Wild study, 5 participants (all male) from
the original group chose not to participate due to space constraints
and personal preferences.

During data collection, participants wore a Google Pixel Watch 2
on both wrists, continuously writing IMU data (linear accelerometer
and gyroscope signals) with a sampling rate of 50 Hz into internal
memory. Visual data was captured using a tripod-mounted iPhone
12 Mini, recording video footage in 0.5x zoom mode at 30 fps. The
distance between the camera and the participant is at least one
meter. Each session lasted 30 minutes. Participants followed verbal
instructions provided by the researchers and were encouraged to
perform each action naturally. Each activity within a scenario was
performed only once per participant, and the order of instructions
was randomized.

5.2.1 Synthetic Dataset. One of the primary challenges in multi-
user settings is accurate person tracking and labeling, which is
both computationally intensive and time-consuming. Instead of
manually annotating identities across frames, we create synthetic
multi-user sequences by combining recordings from different indi-
viduals performing under the same scenarios. We estimated pose
keypoints from each participant then overlaid multiple sequences of
participants’ keypoints onto a single timeline. Specifically, we first
synthesize the video and IMU sequences from multiple users under
the same scenario, resulting in matched video-IMU streams for the
intended number of users, with each frame containing data ranging
from 1 to 10 users. This approach enables us to train and test the
model with various user and device combinations without requiring
tedious, labor-intensive tracking annotations, or repeated data col-
lections. For the In-Lab environment, we collected 125.91 minutes
of data from 10 participants, and 26.31 minutes from 5 participants
in the In-the-Wild setting. After synthesizing the multi-user se-
quences, the In-Lab and In-the-Wild datasets contain synchronized
IMU-video sequences of 14.25 minutes and 5.1 minutes, respec-
tively. This corresponds to 25,634 frames and 256,340 user—device
association pairs in the In-Lab dataset, and 9,189 frames with 45,945
user—device association pairs in the In-the-Wild dataset. Figure 5
illustrates examples of synthesized multi-user video streams.

5.2.2  Multi-User Dataset. To validate the performance of Invis-
ibility Cloak in real-world settings, we conducted an additional
Multi-User data collection at the same place as the In-Lab settings.
In this study, we invited 8 participants where 4 of whom had previ-
ously participated in the synthesized user study. 4 smartwatches
were randomly assigned to 4 participants, and all devices were
worn on their right wrists. Three cameras were set up to capture
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Figure 5: Illustration of the synthetic multi-user data genera-
tion process. The bottom row shows examples of synthesized
frames where multiple users’ skeletons are combined to sim-
ulate realistic multi-user scenes.

Camera #1 View (Tripods) Camera #2 View (Tripods) Camera #3 View (Surveillance)

Figure 6: Multi-user data collection setup and camera views.
Round colored stickers on participants’ heads guided our
later ground truth annotations. The lower row shows the
corresponding camera positions and angles in the room with

detected poses and bounding boxes.

the activities in this space: two were positioned similarly to the
synthesized dataset (referred to as Tripods), and one simulated a
surveillance camera placed high near the ceiling corners (referred
to as Surveillance), illustrated in Figure 6. During data collection, a
screen displayed all activities gathered from the synthesized dataset,
and participants were instructed to randomly pick and perform one
activity for approximately 30 seconds. Notifications were sent every
30 seconds to remind participants to switch to a new activity. This
session lasted approximately 5 minutes. Following this, we con-
ducted a second round of data collection using a similar protocol
but with a new set of activities displayed on the screen for partic-
ipants to select from, as detailed in Section A. Before this round,
the smartwatches were retrieved and randomly reassigned among
the participants. This second session lasted approximately 5 min-
utes. For the ground truth labeling, we first applied the YOLOv11
tracking model to detect and locate each individual’s position and
movements automatically. Due to the complexity of multi-user
scenarios and potential tracking inaccuracies, we then manually
reviewed and corrected the associations frame by frame to ensure
accurate ground truth annotations.

Wang, et al.

6 EVALUATION

We assess the overall performance of Invisibility Cloak in this sec-
tion. Given that we used state-of-the-art algorithms for human de-
tection and pose estimation [31, 68], which have already achieved
high precision, our evaluation primarily examines the accuracy
of the associations between smartwatches and the corresponding
individuals in the videos. Accurate user-device association is the
foundation for camera-based obfuscations and is thus critical to
preserving individual privacy. To comprehensively evaluate associ-
ation performance, we conducted experiments across three distinct
datasets: a synthesized dataset with a 10-user/10-smartwatch in lab
configuration, a 5-user/5-smartwatch in the wild dataset collected
in real-world home settings, and a real-time multi-user dataset
associating 8-user/4-smartwatch to simulate dynamic, real-world
conditions. In addition to evaluating association accuracy, we also
report results on video obfuscation performance and conduct a
real-time usability study to understand user experience and system
effectiveness in practice.

6.1 Evaluation Metrics

To assess the performance of Invisibility Cloak, we adopt several
metrics commonly used in multi-object tracking and person re-
identification. Specifically, we evaluate the user-device association
component using Identification Precision (IDP), Identification Re-
call (IDR), and the Identification F1 (IDF1) score.

In our setting, an association is considered as the True Positive
(IDTP) when the predicted match between a smartwatch (IMU de-
vice) and a user in the video exactly matches the ground truth. The
False Positive (IDFP) is the case where a smartwatch is incorrectly
associated with a user. The False Negative (IDFN) is marked when
a valid association exists in the ground truth, but the system fails
to predict it. Then the Identification Precision (IDP) is defined as:

IDTP
IDP = —————
IDTP + IDFP
It computes the fraction of detected individuals in the current frame
that are correctly matched with their corresponding wireless de-
vices. And the Identification Recall (IDR) and the Identification F1
score are defined as:

DTP 2XIDP x IDR
IDR —_

= ———————, IDFl=

IDTP + IDFN IDP + IDR

IDR measures the proportion of true associations that are cor-
rectly retrieved, while the IDF1 score reflects the balance between
precision and recall. It provides a comprehensive measure of the
association module’s performance.

6.2 Evaluation on Synthesized Dataset

6.2.1 User-Device Associations. In this section, we introduce the
system performance on the synthesized dataset across different
aspects. According to Section 5, the synthesized dataset comprises
two parts: the In-Lab user study involving 10 users and the In-the-
Wild study collected from 5 users. For each study, we designed 4
scenarios that include multiple common activities. Note that the
Independent activity was featured in both studies. To best leverage
the collected data, we configured all users wearing the devices
to require obfuscation to generate the maximum number of user-
device pairs to be tested. This configuration made false negatives
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Figure 7: IDP across the three evaluation configurations. Left:
Within-user evaluation results on the In-Lab dataset across
four scenarios. Middle: Cross-user evaluation on the In-Lab
dataset, trained on data from 5 participants and tested on
the remaining 5. Right: Cross-scene evaluation on the In-the-
Wild dataset with different activity sets.

rare to happen, thus, our analysis in this section primarily focuses
on the precision score. Recall and the F1 scores will be evaluated
with the multi-user real-time dataset in Section 6.3.

Within User Evaluation. Within-user evaluations were conducted
using the In-Lab dataset to assess the system’s performance in
associating 10 users with 10 devices. We split each synthesized
and synchronized recording stream (described in Section 5.2.1)
into training (80%) and testing (20%) parts. To ensure an unbiased
evaluation with no overlap between the training and testing sets,
the 20% test samples were selected as multiple non-continuous
3-second segments across the whole recording streams, starting at
random positions that did not intersect with any part of the training
data. Subsequently, we applied a sliding window of 60 frames (2 s)
with a step size of 1 frame moving along the subset recordings to
predict the association between users and devices frame by frame.
In the training process, we used Adam as the optimizer with a
learning rate of 1 x 1072 and employed a cosine annealing learning
rate scheduler, training the model for 100 epochs.

The results are shown in Figure 7 (left). We observed that the aver-
age precision for the In-Lab study (10 users/10 devices associations)
reached 95.48% (SD=1.425%). Among the four In-Lab scenarios, the
highest association precision was achieved in the Sports scenario,
where participants’ large and dynamic movements facilitated ac-
curate associations and obfuscation request matching. In contrast,
relatively lower performance was observed in the Independent and
Classroom scenarios. In the Independent scenario, participants only
performed small, subtle arm activities without full-body motions
such as touching face or adjusting glasses; also in the Classroom
scenario, participants often remained almost still for some activities
(e.g., while reading or checking emails on laptops), which makes
IMU signals less distinguishable and thus association more chal-
lenging. Besides the precision, the average IDF1 score for the in-lab
within-user evaluation was 97.64%, with a standard deviation of
0.757%. Overall, the association precision was consistently high,
with an average precision of over 95% and no specific precision
falling below 93%.

Cross User Evaluation. We also conducted cross-user evaluations
to examine whether Invisibility Cloak can generalize to unseen
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users within the same environment. Specifically, we set the number
of testing users N to 5, randomly selecting these users from the
pool of 10 users available in the In-Lab dataset. Recordings from
the remaining 10 — N users composed the training set. Then we
conducted the 5-user/5-device association experiment. The sliding
window size was also set to 60 frames with a step size of 1 frame,
and the training procedure remained identical to that described in
the within-user evaluations above, except the learning rate was set
to 1 x 107# to prevent overfitting. The results are shown in Fig-
ure 7 (middle). The average association precision among 5 unseen
users was 94.63% (SD = 0.801%). Consistent with the within-user
evaluations, the Sports scenario exhibited the highest association
accuracy, while the Classroom scenario still showed relatively low
precision. However, we did not observe any significant drops in
precision when associating and matching unseen participants with
their smartwatch IMU data. These findings provide insights into
the system’s adaptability to effectively associate and track users,
even when encountering previously unseen individuals performing
similar actions under identical scenes.

Cross Scene Evalution. To assess the generalizability of Invisibil-
ity Cloak across different scenes (variations in camera positions,
environments, and user activities), we trained the model using data
from all 10 users in the In-Lab study and tested it on data from 5
users in the In-the-Wild study. The test data, collected from multi-
ple users’ homes, features distinct scenes, diverse camera angles,
and a broader range of activities compared to the training data.
The training procedure was identical to that used in the cross-user
evaluations. The results are presented in Figure 7 (right). In this
experiment, the study locations were each user’s kitchen and living
room, which differ substantially from the In-Lab settings. More-
over, the activities were entirely different from those in the In-Lab
study, except for the Independent scenario. The average association
precision achieved was 96.62% (SD = 0.818%), and the IDF1 score
was 96.75% (SD = 0.562%) across the four scenarios. Although the
activities differed, we did not observe any significant performance
drops in the new scenes and activities, such as those in the Kitchen,
Living Room, and Dining Room scenarios. We also noted that the In-
dependent scenario still yielded the lowest performance, indicating
that larger, more dynamic activities provide more information and
facilitate more accurate associations. Overall, these results demon-
strate the robustness and adaptability of Invisibility Cloak under
realistic and diverse real-world conditions.

6.2.2 Window Length. In this experiment, we repeated the Within
User, Cross User, and Cross Scene studies described above but with
different window lengths for user-device associations. During this
experiment, the training set consistently employed a fixed window
length of 15 frames (0.5 second) to extract features while the testing
set was evaluated using various window lengths — 15 (0.5 second),
30 (1 second), 45 (1.5 seconds), 60 (2 seconds), and 75 (2.5 seconds)
- to determine how the amount of temporal context influences the
accuracy of our association process. Figure 8 (A) shows the exper-
imental results. We noticed that longer windows provide richer
temporal context for better association, but excessively long win-
dows may introduce noise or redundancy. Considering all these
factors, we selected a 2-second window (60 frames) for all experi-
ments conducted in the rest of this evaluation.
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Figure 8: A) Effect of window length on user-device association. B) Effect of handedness on user-device association. C) Adjusted

SUS Item Scores (0-4 scaled).

6.2.3 Handedness. In the synthesized data collection, all users were
required to wear smartwatches on both their left and right wrists.
The experiments described above were conducted using data from
the right hand. To examine the influence of handedness on system
performance, we conducted an additional experiment using data
from the left hand. Among the 10 participants in the In-Lab study,
only one participant is left-handed, while the remaining nine are all
right-handed. For the cross-user and cross-scene experiments, all
test participants’ dominant hands are their right hands. We repeated
the experiment described in Section 6.2.1, and the observations are
displayed in Figure 8 (B). We found that the associations with right-
hand IMU data are consistently better compared to the associations
with left-hand IMU signals. This difference can be explained by the
predominance of right-handed users in our training and testing
dataset, which results in the model becoming better optimized for
right-hand associations. Second, right-handed individuals generally
exhibit more distinguishable movements with their dominant hand.
They typically prefer to use their right hand for actions such as
grabbing, dragging, and picking up objects, which provides clearer
motion patterns for the system to learn and match. In contrast, left-
hand IMU signals often capture smaller or less frequent movements,
which increases ambiguity in the association with visual skeleton
tracking. However, despite these differences with right or left hands,
our system maintains robust performance regardless of which wrist
the user wears the smartwatch on, indicating its overall resilience
to variations in handedness.

6.3 Evalution on the Multi-User Dataset

We also evaluated the performance of Invisibility Cloak using the
multi-user dataset, where the synthesized dataset served as the
training set and the multi-user dataset was used as the test set. The
experiments utilized a window length of 2 seconds (60 frames),
with all other training protocols consistent with those described
in Section 6.2.1. To address real-world scenarios where individuals
requesting obfuscation are not always within the camera’s field of
view, we introduced an additional heuristic layer to enhance the
practical deployment performance of Invisibility Cloak.

6.3.1 Unassociating Out-of-sight Users. Users who stream IMU
data and send obfuscation requests may occasionally move out of
the camera’s field of view for a while (e.g., answering the phone
outside the room). Since Invisibility Cloak employs the Hungarian

algorithm for one-to-one matching, requests from users who are
temporarily out-of-view could inadvertently be assigned to users
currently visible in the camera’s frame. This incorrect assignment
can negatively affect the IDR and IDF1 scores. However, an out-of-
sight user who requests obfuscation does not require immediate
attention because their image is already naturally obscured. The
primary concern is to ensure that obfuscation requests are not
incorrectly assigned to visible users who either did not issue a re-
quest or issued a different request. To address this, we introduce
an “unlikely” matching threshold. If any cost score derived from
negating the similarity score for a given IMU-video pair exceeds
this threshold, the system considers it highly improbable that this
pair represents a valid match, thus preventing incorrect associa-
tions. Here, we set the threshold to 3.0 for the following multi-user
experiment.

6.3.2  Association Results. Table 1 presents the detailed evaluation
results after we applied the heuristic layers mentioned above. In
the first round, where participants performed activities identical
to those in the synthesized dataset and the cameras were similarly
positioned on tripods, the precision achieved was comparable to the
synthesized dataset results reported in Section 6.2. This indicates
that the system successfully adapted to real-world scenarios where
multiple users coexist in an environment. In addition, this high
association precision confirms that our system can reliably fulfill
obfuscation requests in realistic environments. However, the IDF1
score was slightly lower than the synthesized dataset results. This
reduction was primarily due to cases where participants requesting
obfuscation temporarily moved out of the camera’s field of view,
as the tripod-mounted cameras could not cover the entire space.

For the surveillance-camera scenario, we observed a slight per-
formance drop due to the significant viewpoint differences from the
training data. Nevertheless, the system maintained a high precision
of approximately 92.31%, indicating that it remains reliable even
with significant changes in camera viewpoints. During the second
round of data collection, participants were asked to perform pre-
viously unseen activities. Of note that, the system’s performance
still remained comparable to that observed with seen activities.
Therefore, our approach generalizes well across novel user activi-
ties without requiring fine-tuning with camera- or activity-specific
training data.
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Metric IDP (%) IDR (%) IDF1(%)
Round #1: Seen Activities
Tripods 94.85 93.88 94.36
Surveillance 92.31 90.32 91.30
Round #2: Unseen Activities
Tripods 91.18 89.61 90.39
Surveillance 89.41 88.67 89.04

Table 1: Evaluation results from the multi-user dataset.

6.3.3  Obfuscation Results. Additionally, we examined the offline-
processed obfuscation performance from the Multi-User videos.
We applied Inpainting obfuscation to all smartwatch-wearing par-
ticipants (4 out of 8). Note that our pipeline first estimates poses
and segments humans, then performs user association, and finally
applies the corresponding obfuscation algorithm. For the robust per-
formance of the obfuscation algorithms we adopted, we expected
the final obfuscation performance to remain consistent across ob-
fuscation options once segmentation and association have been
determined, making these two steps more significant in the perfor-
mance of obfuscation.

We defined an error frame as one in which a smartwatch-wearing
participant was either not obfuscated at all or experienced signif-
icant pixel leakage of personally identifiable features (e.g., face,
upper body shape). Minor visible regions (e.g., fingernails, shoe
soles, or garment edges) were not considered as obfuscation errors,
since these elements typically do not carry meaningful identity
information. We identified a total of 42.36 seconds of obfuscation
errors across all three camera position recordings, corresponding to
2.30% of the total recorded video. These errors primarily came from
two sources: user segmentation, which was implemented using the
YOLO11m Segmentation model. This component was not the focus
of our contribution and was therefore not extensively evaluated;
and user-device association, which is the core innovation of our sys-
tem, was enabled via smartwatch-based camera-IMU association.
Errors in this stage directly affected obfuscation performance.

6.4 Real-time Usability Study

6.4.1 Setup and Procedures. In addition to evaluating system per-
formance, we conducted a supplemental usability study with 10
participants (5 female) to assess real-world applicability. The study
followed the same experimental setup described in Section 5.1. Be-
fore the session, participants were shown an introductory video
and a brief tutorial explaining the obfuscation system.

Each participant was asked to wear a smartwatch on their pre-
ferred wrist, as they normally would in daily life. The smartwatch
ran a custom application (Figure 1 bottom left) that served as both
an interface and a control tool, streaming IMU data and allowing
participants to select their desired obfuscation level. The video
stream was captured using the rear camera of an iPhone 12 mini.
Both the video and IMU signals were synchronized and transmitted
to a MacBook Pro with an M2 chip, which acted as the edge de-
vice. All data processing, computation, and video obfuscation were
performed locally on this laptop.

During the study, each participant interacted with all obfuscation
options at least twice. There were no constraints on user behavior.
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Participants were free to stand, sit, walk quickly, or run. They were
also not instructed to avoid occlusions caused by objects or other
people. Meanwhile, background activities from others in the same
space continued naturally throughout the study environment. The
association model used in this study was pre-trained on the In-
Lab dataset with a 2-second time window. Real-time obfuscated
video was projected onto a TV screen, allowing participants to
observe the results of their interactions immediately. And these
videos were recorded for further examination. After experiencing
the system, each participant completed the System Usability Scale
(SUS) questionnaire [8] to evaluate perceived usability.

6.4.2  Results. Figure 8 (C) shows the average adjusted SUS scores
from 10 participants. Overall, Invisibility Cloak achieved a mean
SUS score of 92.5 out of 100 (SD = 5.12). According to the adjective
rating scale established in [4, 5], this score places Invisibility Cloak
in the “Best Imaginable” category and within the “Acceptable” range
for interface usability. These results indicate that participants found
the system not only technically effective but also highly usable,
intuitive, and well-suited for real-world applications.

After analyzing individual questions in the SUS questionnaire,
we found that Q2, Q3, Q8, and Q10 received the highest scores
(4.0). These questions relate to perceived ease of use and minimal
learning effort. The results indicate strong agreement among par-
ticipants that Invisibility Cloak is intuitive and easy to use without
requiring extensive instruction. Additionally, we reviewed a total of
33 minutes of obfuscated video recorded during the study and man-
ually verified the system’s obfuscation performance. Each frame
contained between 2 and 5 individuals. A frame was considered
successfully obfuscated if the participant’s body was masked ac-
cording to their selected obfuscation level and if either no pixels
from the user were visible or any visible pixels did not correspond
to personally identifiable features. Across the entire recorded video,
we identified 6 incorrect obfuscation clips totaling 3.7 seconds in du-
ration, which represents 0.18% of the total recording. These findings
further demonstrate the robustness and reliability of Invisibility
Cloak in dynamic, real-world, multi-user environments.

7 DISCUSSION
7.1 Edge Implementation

A key objective of our system is to enable real-time, privacy-aware
user identification and data obfuscation without uploading sensi-
tive raw video to remote cloud infrastructure. In this section, we
deployed the whole system pipeline, from video and IMU signal
receiving, signal encoder, cross-modal association, and obfuscation
components, to assess real-time performance and deployment feasi-
bility on common edge devices. Specifically, we selected a desktop
equipped with an NVIDIA RTX 4060 GPU and an Apple Mac Mini
M4 (featuring 10 CPU cores, 10 GPU cores, 16 GB of memory, and a
256 GB SSD) [23] as the edge devices for our deployment study. We
also conducted tests on a workstation with an NVIDIA RTX A5500
GPU as a performance baseline. To maximize performance on each
platform, we deployed the models in hardware-optimized formats.
Models running on Apple Silicon were converted to CoreML, while
those on NVIDIA GPUs were saved in TorchScript format. We then
ran the whole pipeline on these devices using a window length T of
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Device Raw Mask Blur Inpaint Skeleton
Mac Mini 21.29 18.40 18.46 12.16 11.48
Desktop 87.26 3212 30.32 12.51 11.04
Workstation 80.91 30.95 30.19 17.07 14.47

Table 2: FPS for five obfuscation modes across three edge
devices.

60 frames, matching 10 users with 10 devices based on predefined
obfuscation requests. In this evaluation, we measured the process-
ing speed over a continuous 1-minute deployment and results in
frames per second (FPS) that are summarized in Table 2.
According to the results, we observed that the Masking and Blur-
ring obfuscation methods, both non-deep learning-based, were the
fastest, consistently achieving over 30 FPS. In contrast, Inpainting
and Skeleton, which rely on generative models, were more compu-
tationally intensive and required longer processing times. On the
workstation, the Inpainting obfuscation processing reached an av-
erage of 17.07 FPS, and the Skeleton ran at around 15 FPS. Although
the Mac Mini is less powerful than the workstation, performance re-
mained acceptable. Both Inpainting and Skeleton operated at around
12 FPS, and Masking and Blurring are all about 18 FPS. In this case,
the real-time deployment of Invisibility Cloak is feasible on both
high-end and edge-class hardware, with performance suitable for
practical privacy-aware applications in real-world scenarios.

7.2 Power and Computational Cost

The system Invisibility Cloak performs associations between users
and devices relying on three deep learning models: the YOLO model
for pose estimation, a customized association model for matching,
and a lightweight generative model for inpainting. Both the YOLO
model and the inpainting models we leveraged are pretrained, and
their computational costs are detailed in the works [26, 48]. There-
fore, we mainly focus on the computational cost of the customized
model here. For the tracklet length T of 60 frames and 10 users per
frame matched with 10 active smartwatches, the customized model
requires 0.458G floating-point operations (FLOPs) with 0.381M
parameters. In the real-world deployment study described in Sec-
tion 7.1, the power consumption varied across different edge de-
vices. We measured the power usage when running the full system
pipeline (from pose estimation to inpainting) using an electricity
usage monitor [62]. To isolate the system’s actual power draw, we
also recorded baseline power consumption when the system was
not running the system code then subtracted this value to find
out about our system’s real-world power consumption. The power
consumption recorded for the Mac Mini was about 25.9 W, and for
the desktop with an RTX 4060 GPU was around 79 W, indicating
feasibility for long-term deployment scenarios.

7.3 Accuracy and Robustness

Although our system demonstrates promising results in multi-user
tracking and identification, it does not yet achieve perfect accu-
racy (i.e., 100%) in real-world scenarios, as no system can guar-
antee flawless performance. The association algorithm sometimes
misidentifies users, particularly when individuals exhibit similar
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movement patterns or gesture features. Our system currently re-
lies on commercial models such as YOLO for pose estimation and
human segmentation. While these models are widely adopted and
generally robust, the performance may degrade under extreme
conditions, such as severe occlusions, poor lighting, or rapid move-
ments. However, in the supplemental usability study, participants
engaged in various natural activities, including rapid movement
and occlusion by objects or people, but we did not observe signif-
icant performance degradation. This demonstrates the system’s
resilience in real-world scenarios.

To enhance accuracy and robustness further, future work will
focus on developing a multi-camera distributed system and inte-
grating additional modalities, such as thermal and depth imaging.
We also plan to incorporate confusion minimization and long-term
correction mechanisms as supplementary strategies to improve
system performance under diverse and dynamic environmental
conditions.

7.4 System Scalability and Adaptability

Although our experiments have demonstrated effective multi-user
locating and tracking in moderately crowded settings (e.g., 10 partic-
ipants in an indoor space), system performance may degrade when
the number of users increases substantially in very crowded spaces
(e.g., bustling malls with over 100 pedestrians). In such scenarios,
issues like occlusions, tracking ambiguities, frequent obfuscation
requests, and increased computational load can affect both obfusca-
tion precision and system responsiveness. However, in large spaces
that are typically monitored by multiple cameras (since a single
camera would rarely accommodate and record so many individu-
als), the workload can be dispersed across different cameras and
integrated at the edge server using distributed processing strategies.

We also acknowledge that the participant pool in this study,
while sufficient for feasibility validation, was limited in both size
and diversity. This may affect the system’s generalizability across
broader user populations and application contexts. To improve scal-
ability, generalizability, and robustness, future work will focus on
recruiting more participants and evaluating the system in a broader
range of environments. We also plan to explore more efficient and
optimized algorithms, as well as strategies for dynamic resource
allocation, to enhance the system’s scalability and maintain robust
performance in locating and tracking target users under congested
conditions. Additionally, we aim to conduct long-term real-world
deployments and testing (e.g., over several months) to gather deeper
insights and guide future system refinements.

8 CONCLUSION

We proposed Invisibility Cloak, a visual-inertial system that lever-
ages wearable IMU signals to enable personalized video obfuscation
in shared environments. Our system associates IMU streaming from
smartwatches with human activities captured in surveillance videos
to dynamically identify users and apply privacy-preserving requests
according to individual preferences. We conducted comprehensive
evaluations on both synthesized and real-time multi-user scenarios.
We also designed hierarchical obfuscation levels to accommodate
diverse user privacy preferences across different real-world scenar-
ios, ranging from raw video transmission to advanced inpainting
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with skeleton overlays. In addition, our system demonstrated low-
latency performance on edge devices, ensuring real-time processing
in practical applications. We believe that Invisibility Cloak uniquely
addresses the challenge of balancing utility and privacy in vision
Al paving the way for practical, privacy-aware applications in
surveillance and IoT systems.
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A USER STUDY SCENARIOS

(4) Open a drawer, put something inside, then close it.
(5) Open the vacuum and clean the desk.

A.1 InLab

Office Space. Living Room (Watching TV).
(1) Randomly draw something on a whiteboard. (1) Head to the couch, grab a cushion, and pad it with your
(2) Try to explain the drawing. hands.

(2) Put the cushion on the couch and sit down.
(3) Pick up the remote and press the button to turn on the TV.
(4) Put the remote down on the table and lean back on the couch.

(3) Erase the drawing.

(4) Carry a stack of books in your arms, walk into the room, and
put the stack down on a desk.

(5) Return the books to the shelf, placing each one back in its
place.

(6) Pull a book from the shelf, open it, and read.

(7) Sit down and take notes with pens.

(8) Close the book and place it back on the shelf.

Environment Independent.
(1) Adjust smart glasses.
(2) Touch hair.
(3) Touch face.

(4) Stretch arms.

(5) Scratch the other hand/arm.

(6) Adjust clothes.

Classroom.
(1) Walk over to the desk and drop the backpack onto it.
(2) Wipe the desk clean, then toss the wipe into the trash bin.

(3) Take the laptop out of the backpack and open it. B MULTI-USER SCENARIOS

(4) After a moment, shut the laptop and put it back into the
backpack.
(5) Stand up, wear the backpack, and step out of the room.

Sports.

(1) ROM (a range of motion sequence - followed by video).
(2) Walking around the Room.
(3) Freestyle (except standing still).

Environment Independent.

(1) Adjust smart glasses.

(2) Touch hair.

(3) Touch face.

(4) Stretch arms.

(5) Scratch the other hand/arm.
(6) Adjust clothes.

A.2 Inthe Wild
Kitchen (Cooking&Eating).

(1) Head to the fridge, open it, and take out something.
(2) Place it on the counter.
(3) Pick up the cutting board and knife and peel an apple.

(4) Open the microwave, place a dish inside, and close the door.

(5) Open the microwave and take out the dish.
(6) Return to the counter and start eating the apple.

Dining Room (Cleaning).

(1) Roll up the sleeves.
(2) Move the chair.
(3) Clean the floor.

(1) Pick up a mug
(2) Hand the mug to another user
(3) Place the mug on the table
(4) Waving/pointing using hands and arms
(5) Using Smartphone
(6) Passing and stacking books
(7) Rearranging papers on a table
(8) Drinking water
(9) Shaking hands
(10) Talk with someone
(11) High-five
(12) Fist bumping
(13) Wiping hands
(14) Throwing an object with others
(15) Rolling wrists
(16) Unboxing
(17) Mimicking guitar strumming
(18) Tapping on others’ shoulders
(19) Rock-paper-scissors games with multiple users
(20) Rubbing hands
(21) Spinning an imaginary pen
(22) Giving a thumbs-up
(23) Crossing arms and then extending outward
(24) Salute
(25) Swinging an imaginary tennis racket
(26) Mimicking a baseball throw
(27) Lifting an object overhead
(28) Open the door
(29) Pressing the button
(30) Making a dramatic “Welcome” wave
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