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ABSTRACT 
Contemporary AR/VR systems use in-air gestures or 
handheld controllers for interactivity. This overlooks the skin 
as a convenient surface for tactile, touch-driven interactions, 
which are generally more accurate and comfortable than free 
space interactions. In response, we developed ActiTouch, a 
new electrical method that enables precise on-skin touch seg-
mentation by using the body as an RF waveguide. We com-
bine this method with computer vision, enabling a system 
with both high tracking precision and robust touch detection. 
Our system requires no cumbersome instrumentation of the 
fingers or hands, requiring only a single wristband (e.g., 
smartwatch) and sensors integrated into an AR/VR headset. 
We quantify the accuracy of our approach through a user 
study and demonstrate how it can enable touchscreen-like in-
teractions on the skin. 

Author Keywords 
Touch interaction; Finger tracking; Touch segmentation; 
Augmented reality (AR); Virtual reality (VR). 
CSS Concepts 
Human-centered computing → Human computer interaction 
(HCI) → Interaction devices.  

INTRODUCTION 
Today’s augmented and virtual reality systems (AR/VR) 
generally rely on either handheld controllers (e.g., HTC Vive 
[14], Oculus Rift and Touch [6]) or in-air bare hand gestures 
(e.g., Leap Motion [19], Microsoft HoloLens [24]) for user 
input. Both of these approaches excel at fluid, coarse-grained 
input, but are weaker at fine-grained interactions, such as 
typing on a virtual keypad. Indeed, it is rare to see closely 
packed targets in contemporary AR/VR interfaces, and when 
they do appear, extra care must be taken by the user. 

Fortunately, other input modalities are possible, which can 
improve the precision, bandwidth and comfort of AR/VR in-
teractions. One such opportunity is input on the skin, which 
offers a convenient surface for tactile, touch-driven interac-
tions (Figure 1). Prior work has shown that by operating on 
physical surfaces, users are often more accurate and report 
higher comfort than equivalent free-space interactions [22]. 
Further, the ability for users to position arm-borne interfaces 
as they wish, in concert with increased input precision, af-
fords greater privacy and may be less socially disruptive.  

A wide variety of approaches have been considered to enable 
on-skin input, ranging from wearing a conventional trackpad 
on the body [32], to worn range-finding sensors [26]. How-
ever, most common are systems that use worn cameras and 
computer vision (e.g., [4, 8, 12, 15, 25, 38]), which are gen-
erally very accurate at tracking fingers spatially. OmniTouch 
[12], which is perhaps the most closely related prior system, 
offers a useful benchmark: mean Euclidian finger tracking 
error of 11.9 mm (SD=7.3) on the hand and forearm. 

However, a common weakness across camera-based systems 
is the inability to accurately segment true touches from fin-
gers hovering just above the skin. With visible light (RGB) 
cameras, there may be no perceivable difference. For this 
reason, depth cameras are often used, offering distance infor-
mation that can help disambiguate touching vs. hovering fin-
gers. However, limited depth camera resolution and sensor 
noise makes this surprisingly challenging [35]. This hover 
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Figure 1. ActiTouch enables robust on-skin touch segmenta-

tion using a wristband emitter (A) and sensors integrated into 
an AR/VR headset (B). For spatial tracking of fingers, we use 
Leap Motion (C) as a proof of concept. Together, this enables 
precise touch input (D) on the skin for AR/VR interfaces (E). 



 

ambiguity makes end user touch interactions more cumber-
some, with users often having to perform exaggerated (z-
axis) trajectories to compensate. Again, using OmniTouch as 
a benchmark, only fingers “above 2 cm were reliably seen as 
hovering” [12]. Of course, on devices like smartphones, us-
ers rarely lift their fingers this high when e.g., typing or 
scrolling. 

In response, we developed ActiTouch, a new electrical 
method that enables precise, low-latency touch segmentation 
by using the body as an RF waveguide. Our method compli-
ments the spatial tracking strengths of computer vision ap-
proaches, enabling a combined system with both high accu-
racy finger tracking and robust touch segmentation. Im-
portantly, our system requires no cumbersome instrumenta-
tion of the hands or fingers, requiring only a single wristband 
(Figure 1A) and a headset (Figure 1B). We quantify the ac-
curacy of our approach through a user study and demonstrate 
touchscreen-like interactions on the skin in AR/VR. 
RELATED WORK 
Our work intersects with two disparate areas of research. 
Most related to our application domain are systems with on-
skin interactivity. Even more closely related to our technical 
approach are systems that leverage the body’s natural ability 
to conduct electrical signals for interactive sensing purposes.  

On-Skin Interfaces 
The immediacy of skin for on-the-go AR/VR interactivity 
has drawn attention from the HCI community for over a dec-
ade, starting with early work by Karitsuka et al. [15] and 
Yamamoto et al. [38], both of which used over-the-shoulder 
cameras and projectors. Many technical approaches have 
been considered, which we now briefly review. 

One option is to directly modify the body, for example, by 
adding a sensing layer to the skin’s surface, as seen in iSkin 
[34]. It is also possible to implant sensors under the skin [13], 
though not all users are comfortable with such instrumenta-
tion, and so there has also been much work on less invasive 
techniques that can sense from afar. For example, the body 
is a good conductor of sound, and so many projects have uti-
lized bio-acoustics to enable on-body interactions [11, 18, 
26]. Acoustic sensing has also been used above the skin for 
touch input, using e.g., sonar [21]. 

Optical approaches are also popular, the simplest of which 
use arrays of infrared proximity sensors integrated into worn 
devices [16, 36, 37]. Using a fingerprint sensor, SkInteract 
[28] was able to detect discrete locations on a user’s hand. 
Many tag-based finger tracking schemes have been used in 
concert with worn cameras, including retroreflective [15], 
colored [25] and fiducial markers [29]. PalmBit [38] avoids 
using markers by tracking the contours of fingers, though 
only finger-to-finger touches are supported.  

Projects such as OmniTouch [12], Imaginary Phone [8] and 
PalmRC [4] enabled continuous on-skin touch tracking with-
out markers by using depth cameras, though as discussed in 
the introduction, this approach has other drawbacks. Our 

proof-of-concept system also uses computer vision for finger 
tracking, though we use an off-the-shelf solution (Leap Mo-
tion [19]) and combine it with ActiTouch for touch segmen-
tation. As we will show, this combination, though incom-
plete individually, is potent when unified. 

Body as an Electrical Medium 
More closely related to ActiTouch are electrical methods for 
enabling on-skin interactivity. For example, Botential [23] 
utilized electromyography (EMG) to detect gestures, while 
AuraSense [40] used electric field sensing for in-air finger 
tracking. However, these approaches do not use the body as 
an electrical medium. ActiTouch takes advantage of the hu-
man body’s electrical conductivity, brought to light in the 
HCI community by papers such as DiamondTouch [5], Hu-
mantenna [3], and EMSense [17]. Recently, Varga et al. [33] 
published an in-depth investigation of this phenomena, fo-
cused on implications for Body Channel Communication.  

With respect to on-body interactions, there are three projects 
of particular note. EnhancedTouch [30] and Enhanced 
TouchX [9] leveraged modulated electrical current to detect 
human-human touch events, but did not consider a user 
touching his/her own skin for input. Closest to this work is 
SkinTrack [39], which used a ring emitter to inject RF into a 
wearer’s arm when touch contact is made. A smartwatch on 
the opposing arm contained multiple receiver electrodes that 
were used to detect and track finger touches by comparing 
the relative phase of received signals. This arrangement re-
quired both hands to be instrumented (i.e., not a single smart-
watch, as we propose) and did not consider integration into 
AR/VR headsets. We also explore a unique fusion between 
RF sensing and computer vision, leveraging their strengths 
whilst sidestepping weaknesses. 

SENSING PRINCIPLE  
ActiTouch leverages the conductivity of the human body, 
which conveniently serves as a transmission medium for RF 
signals. When a user wears an emitter on the arm, the RF 
signal mainly flows between the two electrodes (P1, Figure 
2 left). When a user touches the other arm, a second path (P2) 
is formed (Figure 2 middle). We also found that P2 increases 
airborne RF radiation. By placing receiver electrodes in a lo-
cation that is both along the path of P2 and proximate to air-
borne radiation, we can use P2 as a touch detection mecha-
nism. Although an ideal setup would be to integrate the re-
ceiver into the emitter wristband, we found that proximity to 

 
Figure 2. Dominant RF signal paths before (left) and after 

touch (middle). The two electrodes on a headset receiver ca-
pacitively couple to P2 for touch detection (right). 

 



 

P1 provided poor signal-to-noise ratio (SNR). Another pos-
sibility is to use a receiver worn on the opposite wrist, but 
this means users must wear two wrist-worn devices, which is 
less typical. Instead, we opted to use the head (Figure 2 
right), where an AR/VR headset offers an existing platform 
for instrumentation.  

We conducted a basic study to verify our sensing principle 
(5 participants, 2 female, mean age 24). To better reflect a 
wearable scenario (i.e., no wall power, small ground plane), 
we used a battery-powered AD5930 [2] to generate an RF 
signal and a battery-powered Bluetooth-enabled ADC for 
measurements. The emitter and receiver used two 2×2 cm 
copper electrodes attached longitudinally to the user’s arm. 
The emitter was worn on the wrist of the touching hand, and 
the receiver sat on the opposite wrist (Figure 3). The emitter 
was configured to output a 9 Vpp signal at 10.5 MHz (found 
to be optimal in [10]). Our hypothesis was that placing the 
receiver inside P2 should yield a stronger received signal.  

After wearing the two wristbands, participants were asked to 
use their right index finger to touch on their opposing palm 
and forearm. These two locations meant the receiver wrist-
band was inside and outside P2 respectively (Figure 3). At 
each touch location, we collected 30 data points with partic-
ipants touching the skin, and 30 data points with fingers hov-
ering ~1 cm above the skin. We calculated the amplitude dif-
ference between touching and hovering as an indicator of P2. 
We found that when the receiver wristband was outside P2, 
the on-touch signal delta was 0.21 Vpp on average. When the 
receiver was placed inside P2, the measured on-touch signal 
delta increased to 2.30 Vpp. This lends credence to our 
model, though we caution this is a preliminary result. 

ELECTRODE MATERIAL INVESTIGATION 
Efficient and reliable injection of AC signals into the human 
body requires careful material design of the electrodes. We 
investigated five materials: copper, copper coated by a thin 
layer of Kapton tape, silver fabric, dry medical electrode, and 
wet medical electrode. For each material, we made a pair of 
2×2 cm electrodes (except for the dry medical electrode, 
which came as 1 cm disks). Each pair of electrodes was at-
tached to a user’s skin 10 cm apart. We then inserted a 9 Vpp 
swept-frequency signal (100 kHz to 12 MHz) with one elec-
trode, while measuring the received signal amplitude from 
the other electrode. We recruited three participants (1 female, 

mean age 23) and collected data from three body locations: 
front of the arm, back of the arm, and forehead.  

We averaged these results, shown in Figure 4. Among all 
electrode materials, the silver-based fabric [1] provided the 
strongest received signal, and thus we adopted it for our final 
implementation. However, copper with Kapton tape yielded 
the most consistent response across all signal frequencies and 
was therefore used for subsequent characterization studies. 

ELECTRODE PLACEMENT INVESTIGATION  
The next factor that significantly effects on-body RF sensing 
is electrode placement, which we also investigated. Prior 
work has mainly studied two electrode configurations – ca-
pacitive and galvanic – which inspired our electrode place-
ment study design. In a capacitive configuration (Figure 5 
top), the signal electrode is attached to a user’s skin while the 
ground electrode is floating, capacitively coupling to earth 
common ground. In a galvanic configuration, both signal and 
ground electrodes are attached to a user’s body. We studied 
two arrangements in this configuration – transversal and lon-
gitudinal (Figure 5, middle and bottom). We investigated all 
pairings of emitter and receiver configurations, resulting in a 
3×3 study design (Table 1). 

Four participants were recruited for this study (2 female, 
mean age 24). For all nine emitter-receiver combinations, we 
configured the emitter to sweep from 100 kHz to 12 MHz at 

 

Figure 3. Average received signal when the receiver is  
placed outside (left) and inside (right) the circuit. 

 

 
Figure 4. Received signal amplitude across electrode  

materials. Error bars are standard deviation (variation  
mostly comes from swept frequency measurements). 
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Figure 5. Electrode configurations we studied. 

 



 

9 Vpp. We measured the received signal strength at nine 
touch locations (Figure 6) while the participant was hovering 
~1 cm above the skin and touching the skin, recording the 
amplitude before and after touch. Results are shown in Table 
1 (combining all participants, touch locations and frequen-
cies for each emitter-receiver configuration). We found the 
configuration that used the galvanic longitudinal electrode 
placement for both the emitter and receiver yielded the best 
on-touch signal. We also used our swept frequency data to 
confirm 10.5 MHz offered the best SNR. 

SKIN SAFTY INVESTIGATION   
To test if ActiTouch is skin-safe, we measured the current 
inserted into a user’s body using the configuration identified 
in the previous sections (i.e., galvanic longitudinal, 2×2 cm 
silver fabric electrodes placed 2 cm apart, 10.5 MHz excita-
tion signal frequency). The injected current was estimated by 
measuring the bio-impedance at the wrist.  

Four participants were recruited for this test (1 female, mean 
age 44). For each participant, we measured the peak and 
RMS voltages of the open (OC) and closed (L) circuit using 
a Tektronix MSO58 oscilloscope on the back of the hand and 
the palm. The bio-impedance is calculated using the meas-
ured voltage and the source impedance:  

Zbio = Zs (VOC/VL -1), where Zs = 50 Ohm. 

We measured an average RMS bio-impedance of 420 Ohm 
(SD=266). Thus, the maximum contact current should be 
~10 mA when the output voltage is configured at 9 Vpp. De-
spite an extensive search, we did not find any research link-
ing this frequency range and current to negative health ef-
fects, though we note that long-term studies are ongoing. 

IMPLEMENTATION  
Our proof-of-concept implementation of ActiTouch (Figure 
7) required custom electrodes, PCBs, software, and wrist- 
and head-worn hardware. We now describe each of these 
components in detail. 

Electrodes 
As previously discussed, we found a silver-based conductive 
fabric [1] to offer the strongest skin-electrode coupling 
among the electrode materials we tested. We cut this fabric 
into small patches that we integrated into two worn compo-
nents – a wristband emitter and a headset receiver (Figure 7). 
To electrically connect the fabric to our sensor boards, we 
used SMA cables soldered to fabric snap fasteners.  

Emitter Wristband 
Our emitter board is built around an AD5930 signal genera-
tor chip [2]. To interface with this chip, we used a Freescale 

K20P64M72SF1 microcontroller [7] running at 96 MHz 
with Teensy firmware [27]. The AD5930 is configured to 
output a 10.5 MHz signal at 200 mVpp. We remove the DC 
component and amplify this signal to 9 Vpp. The board is 
powered by a 3.7 V lithium ion polymer battery. For elec-
trodes we use two 2×2 cm silver-fabric electrodes with a 
2 cm spacing. All of these components are affixed to an elas-
tic Velcro strap worn on the wrist (Figure 7, left two images). 

Receiver Headset 
Our receiver board features a two-stage differential signal 
amplification analog frontend with a gain of 10, built around 
a LT1806 opamp [20]. The amplified signal is then DC bi-
ased to 1.5 V with a voltage reference chip [31] and sampled 
at 2 MHz by our microcontroller’s built-in ADC. Due to un-
der-sampling, we actually measure an alias of our 10.5 MHz 
emitted signal. Raw measurements are sent to a laptop over 
Bluetooth at 50 FPS for additional processing (described 
next). The receiver board is powered by a 3.7 V lithium ion 
polymer battery. For electrodes, we found the soft region be-
low the eyes to offer the most reliable skin-to-electrode con-
tact (see Figure 7, headset receiver, side view).  

Touch Tracking Pipeline  
Our touch tracking software runs on a 4-core Intel i7 laptop. 
After our software receives measurements from our receiver 
board over Bluetooth, it computes an FFT (non-overlapping 
window of size 128). We use the FFT bin that contains 10.5 
MHz as the RF signal strength indicator for touch segmenta-
tion. Due to changes in user posture and varying proximity 
of the hands to the head, it is not possible to use the raw am-
plitude of the received signal for touch detection. Instead, we 
use the first derivative – a sudden and significant increase in 
signal amplitude indicates a Finger Touch Down event, 
whereas a sudden decrease indicates a Finger Touch Up 
event. This signal is sufficiently clean and characteristic that 
we can use fixed thresholds with basic hysteresis. 

To track a user’s fingers and arms in 3D, we used a Leap 
Motion [19] camera (Orion SDK) attached to the front of our 
headset. Specifically, we track the index finger and its dis-
tance to the opposing palm and arm planes. If the finger gets 

  
Figure 6. Studied touch locations on the uninstrumented arm. 

 

 
Figure 7. ActiTouch wristband (left two images)  

and headset (right two images). 

 

 
Table 1. Average on-touch signal delta for our  
various electrode configurations (unit mVpp). 

 



 

closer than 3 cm to one of these interactive planes, the detec-
tion pipeline changes from No Touch to a Finger Hover state. 
While in this state, if the first derivative of the received signal 
is above a threshold, the system moves to a Finger Touch 
state. If the first derivative exceeds a second, negative thresh-
old, the system moves back to a Finger Hover state. If the 
finger moves further than 3 cm away from either the palm or 
arm, the state returns to No Touch. Figure 8 offers an over-
view of this algorithm.  

Latency 
To measure the touch segmentation latency of ActiTouch, 
we took repeated measurements with a high-speed camera. 
End-to-end latency – from the moment the finger touches the 
skin to the instant the computer displays the touch event – 
was 141 ms on average. In the future, this could be improved 
by forgoing Bluetooth transmission and laptop processing, 
and instead performing all compute on processors found in 
newer AR/VR headsets. 

USER STUDY 
To evaluate ActiTouch tracking performance, we ran a user 
study with 10 participants (2 female, mean age 26, all right 
handed). This took approximately one hour and participants 
received $10 for their time.  

We considered several options for ground-truthing touch 
events, including a Vicon optical tracking setup and a side-
mounted depth camera. However, we found in piloting there 
were significant challenges due to finger curl and angle of 
attack, as well as complex geometry at the point of contact 
that necessitated sub-millimeter tracking. Fortunately, we 
found that human observers were surprisingly accurate, as 
they could observe the kinematics of finger impacts and the 
reaction of the limb being touched (e.g., skin deformation, 
deflection of the limb). For these reasons, we used human 
observers to confirm touch events in the study.  

Procedure 
We evaluated ActiTouch at three body locations: palm, back 
of the hand, and inside of the forearm. These areas are rela-
tively flat and sufficiently large for touch interactions. After 
a brief participant orientation, we drew 30mm-interval cross-
hairs on the three body locations – 3×3 for the palm and back 
of the hand, and 2×4 for the forearm (Figure 9). We then 
asked participants to wear our headset and wristband. The 
headset was hollowed-out (i.e., no screen; Figure 7) so that 
participants could see their arms. This was done to remove 
confounding experimental effects, such as VR latency and 
tracking offsets.   

We tested the three body locations sequentially, in a random 
order. For each location, we collected three rounds of data, 
and in each round, we collected 10 data points for each cross-
hair. Crosshairs were automatically requested on an adjacent 
laptop screen. After the experimenter confirmed the partici-
pant performed a touch (note the detected touch state was 
hidden from both the participant and experimenter), the ex-
perimenter advanced the study software to the next trial. The 
experimenter only intervened if a trial was not performed as 
requested (e.g., wrong crosshair was touched).  

After Touch data was collected, we attached a small 5mm-
tall transparent acrylic (i.e., not conductive) cylinder to the 
participant’s fingertip and repeated the above procedure 
(note this cylinder was fully occluded by the finger and not 
visible from the perspective of the Leap Motion). This ses-
sion collected Hover data so that we could investigate false 
positive instances when the finger was very close, but not 
touching the skin.  

In total, this procedure (10 participants × 26 crosshairs × 3 
rounds × 10 data points) yielded 7800 Touch and 7800 Hover 
trials. Only live touch state output by ActiTouch was rec-
orded (i.e., no post hoc calibration or processing).  

Touch Segmentation Accuracy 
On average, ActiTouch achieved a touch segmentation accu-
racy of 93.8% (SD=2.0). Figure 10 shows the accuracy bro-
ken out by body location. Of the errors, 24.2% were false 
negatives (i.e., Touch recognized as Hover) and 75.8% were 
false positives (i.e., Hover recognized as Touch). 

 
Figure 9. Requested touch locations (dashed crossings) and the 

tracked touch points (blue dots) from all participants. Also 
shown are 2σ confidence ellipses for each crosshair. 

 

 
Figure 8. Overview of touch segmentation algorithm. Dfs is 
the Leap-Motion-reported distance between the fingertip 

and palm/arm surface; DeltaRF is the first derivative of the 
received amplitude; Vt is the transition threshold. 

 

 
Figure 10. Touch segmentation accuracies across our three  

body input locations. Error bars are standard deviation. 

 



 

As one point of comparison, we ran a post hoc touch seg-
mentation analysis using only the 3D data reported by the 
Leap Motion (i.e., a CV-only approach). We varied the 
touch/hover threshold from 1 to 50 mm (in 1 mm increments) 
and re-ran our logged data. The best average touch segmen-
tation accuracy achieved (i.e., assuming the ideal threshold 
was known a priori) was 55.5% (SD=1.6).  

Touch Tracking Accuracy  
We also evaluated the touch tracking spatial precision of our 
combined ActiTouch plus Leap Motion pipeline. To cali-
brate the Leap Motion, we used the first touch trial on each 
crosshair from each participant to compute a calibration ma-
trix for each body location, which we applied to that partici-
pant’s study data. We then calculated the Euclidian distance 
error between the reported touch locations and the actual re-
quested touch locations. We included false positives trials 
(i.e., hover trials detected as touches) to better reflect real 
world performance. We found that ActiTouch achieved a 
mean distance error of 5.3 mm (SD=1.1). Figure 9 plots all 
touch trials from our 10 participants, along with 97.8% 
(mean + 2σ) confidence ellipses. 

Supplemental Study: Continuous Drawing 
To test the continuous touch tracking capability of Acti-
Touch, we asked the same group of participants to draw five 
different shapes on their palms (Figure 11, top left), repeated 
three times each, as naturally as they would on a conven-
tional touchscreen. The crosshairs drawn on the skin from 
the previous study were used as guides to provide a unified 
scale. Figure 11 shows the raw drawn paths superimposed 
from all participants, with no post-hoc corrections or per-
user calibration.  

Supplemental Study: Wristband Receiver 
Finally, we ran a variant of our study that used a wrist-worn 
receiver (worn on the opposite arm to the wrist-worn emit-
ter), instead of the receiver integrated into a headset. This 
study used the same procedure as our main study, as well as 
the same set of participants. In this arrangement, ActiTouch 
achieved a mean touch segmentation accuracy of 95.8% 
(SD=2.3), with a mean tracking distance error of 4.3 mm 
(SD=0.7). This is slightly more accurate than our headset 

receiver, though this arrangement requires instrumentation 
of both wrists, which as noted earlier, is less desirable. 

EXAMPLE APPLICATIONS  
To illustrate the utility of our system, we created three exam-
ple applications: a dial pad, a music player, and a drawing 
app. Similar on-skin interfaces have been demonstrated in 
prior work, but our versions of these applications feature 
denser interactors, taking advantage of ActiTouch’s high 
touch segmentation accuracy. Please also see Video Figure. 

Our dial pad app, seen in Figure 1, is automatically placed 
on the palm and features the standard 3×4 grid of buttons. On 
the longer forearm region, we place a scrollable list of con-
tacts. A scroll bar for fast alphabetical navigation is located 
on the middle finger. Figure 12 (top) shows a screenshot of 
our music player application, which uses contemporary 
scrolling and swiping gestures to navigate between songs, as 
well as buttons for pause/play and volume control. Finally, 
we created a drawing app (Figure 12, bottom) to highlight 
fine grained continuous tracking (beyond directional 
swipes). In addition to the main canvas area on the palm, the 
fingers are used as buttons (save, pause/play, erase/paint tog-
gle) and sliders (controls for brush thickness, brush color). 

DISCUSSION 
Despite respectable touch segmentation accuracy, Acti-
Touch has several notable limitations. First, good skin-elec-
trode contact is key to achieving strong and reliable RF sig-
nal; if users prefer looser fitting of the wristband or headset, 
there will be a reduction in performance. Second, although 
multi-finger touches result in stronger received signal than 
single-finger touches, our current system cannot reliably dis-
tinguish these two events. One potential workaround is to 

Figure 11. Requested shapes superimposed (top left) onto the 
crosshairs (green) that were drawn on participants’ palms. 

Remainder of figure are paths drawn by all participants with 
no post-hoc or per-user calibration. 

 
Figure 12. Example applications: a music player (top),  

and a drawing app (bottom). See Figure 1 for dial pad app. 



 

leverage computer vision, which could predict the number of 
touching fingers based on hand pose.  

As our headset receiver is sensitive to airborne radiation 
from the emitter, some poses (especially those that bring the 
arms closer to the head) cause interference. For this reason, 
we used the first derivative of the received signal, as poses 
tend to change less rapidly than the instantaneous touching 
of a finger to the skin. Nonetheless, we still encountered false 
positives, and this remains an obstacle for future work. Like-
wise, the amplitude of the first derivative was impacted by 
user pose and distance between emitter and receiver, and thus 
a dynamic threshold should be employed in future systems. 
Finally, we found that touching large conductive surfaces 
(e.g., laptops, magnetic whiteboards, appliances with metal 
enclosures) amplified the received signal. In the future, this 
effect might be used to support on-world touch interactions. 

CONCLUSION 
Skin is a convenient and comfortable touch input surface for 
AR/VR interactions, where contemporary input approaches 
are generally performed in free space, limiting precision. To 
advance this vision, we developed ActiTouch, a novel touch 
segmentation technique that uses the human body as an RF 
waveguide. Users need only wear one wristband emitter 
(which could be integrated into future smartwatches) and a 
head-worn receiver (which can be easily incorporated into 
AR/VR headsets). We conducted a series of investigations to 
characterize RF signal propagation in the body, as well as 
optimize electrode material and placement. We also ran a 
user study to evaluate the performance of ActiTouch, using 
a Leap Motion as an exemplar computer vision system to 
provide finger tracking data. Our results show a mean touch 
segmentation accuracy of 93.8% and a mean tracking error 
of 5.3 mm. While future work remains, we believe Acti-
Touch illuminates a promising new way to enable robust 
touch sensing in a practical form factor.  
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