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Figure 1: Overview of the full WheelPose data generation pipeline. Developers can choose different motion sources. Motion
sequences are modified according to the specification stated below before being evaluated by human evaluators. Developers can
regenerate, filter, and clean motion sequences from human evaluations before all motions are converted into Unity readable
AnimationClips. Converted motion sequences, selected background images, and parameters are used in simulation to generate
synthetic images and their related annotations for use in model boosting.

ABSTRACT

Existing pose estimation models perform poorly on wheelchair
users due to a lack of representation in training data. We present
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a data synthesis pipeline to address this disparity in data collec-
tion and subsequently improve pose estimation performance for
wheelchair users. Our configurable pipeline generates synthetic
data of wheelchair users using motion capture data and motion
generation outputs simulated in the Unity game engine. We vali-
dated our pipeline by conducting a human evaluation, investigating
perceived realism, diversity, and an Al performance evaluation on
a set of synthetic datasets from our pipeline that synthesized differ-
ent backgrounds, models, and postures. We found our generated
datasets were perceived as realistic by human evaluators, had more
diversity than existing image datasets, and had improved person



CHI ’24, May 11-16, 2024, Honolulu, HI, USA

detection and pose estimation performance when fine-tuned on
existing pose estimation models. Through this work, we hope to
create a foothold for future efforts in tackling the inclusiveness
of Al in a data-centric and human-centric manner with the data
synthesis techniques demonstrated in this work. Finally, for future
works to extend upon, we open source all code in this research and
provide a fully configurable Unity Environment used to generate
our datasets. In the case of any models we are unable to share due
to redistribution and licensing policies, we provide detailed instruc-
tions on how to source and replace said models. All materials can
be found at https://github.com/hilab-open-source/wheelpose.

CCS CONCEPTS

« Human-centered computing — Accessibility systems and
tools.
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1 INTRODUCTION

The inclusiveness of Al depends on the quality and diversity of data
used to train Al models. We focus on pose estimation models, which
have found widespread use in health care, environmental safety, en-
tertainment, context-aware smart environments, and more. These
models are a major concern in the push for Al fairness due to
the disparity in their accuracy of predicted postures between able-
bodied users and users with disabilities [38, 95, 106]. Focusing on
human movement, Olugbade et al. [73] surveyed 704 open datasets
and found a major lack of diversity. The authors found no datasets
that included people with disabilities performing sports, engaging
in artistic expressions, or simply performing everyday tasks. We
suspect that the lack of diversity has contributed to biases and
poor performance on users with disabilities in many popular Al
models trained on common human movement datasets like De-
tectron2 ImageNet [108]. This is especially apparent in users who
use mobility-assistive technologies (Figure 2). The lack of disability
representation in training data can be directly attributed to poor ac-
cessibility in the data collection process for people with disabilities
[38, 74]. People with disabilities often must overcome more chal-
lenges in data collection during their commute and communications
in the recruitment and participation process. One such example
and the focus of our work are wheelchair users, who may not be
able to navigate through motion capture rigs easily. Additionally,
certain poses that able-bodied users could easily perform might be
difficult or even dangerous for people with motor impairments. To
improve disability representation in training data in the push for
inclusive Al, we must make data collection equitable across people
with all levels of capabilities.

Prior work has combated this issue by proposing guidelines in the
design of studies [14] and online data collection systems that could
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be more accessible to people with disabilities [74]. We propose an
alternative solution to the data collection problem: synthetic data.
Like how synthesized materials could help preserve scarce natural
resources — synthetic rubbers were developed in part because of
concerns about the availability of natural rubber — synthetic data
could be valuable in supplementing insufficient data collection
from people with disabilities. While traditional motion capture
procedures lie on a spectrum of difficulty dictated by the motion of
the user and exacerbated by the innate difficulties of data collection
with users with assistive technologies, synthetic data offers a more
accessible alternative where different actions, settings, and assistive
technologies, ranging from cooking at home to performing back-
flips in the forest, are equal in the difficulty of implementation and
feasibility.

In this research, we present a novel data synthesis pipeline which
leverages motion generation models to simulate highly customiz-
able image data of wheelchair users. Our approach includes steps
for user-defined parameters, data screening, and developer feed-
back. This pipeline yields image data which can be used to improve
the performance of Al models for wheelchair users. We evaluate
this in the case of pose estimation by fine-tuning common pose
estimation models, trained on common human movement datasets,
with our synthetic data. Fine-tuned models are then tested on a new
dataset of wheelchair users to analyze the degree of improvement
from adding synthetic data to training datasets.

Finally, as we are cautious about the problematic simulation of
disabilities (e.g., blindfolded participants to simulate people without
vision or with low vision), synthesized wheelchair user postures
are carefully reviewed in human evaluations to avoid inadvertently
exacerbating existing equitability problems our approach attempts
[14]. Our goal is not to exclude wheelchair users from Al training,
but rather present a data collection solution that enables them to
shepherd the synthesis of data. In doing so, this research leverages
data as an intuitive way for wheelchair users to impact Al training,
through which we hope to produce more fair and inclusive Al
models.

Through our work, we aim to answer the following research
questions and related sub-questions in the context of wheelchair
users and pose estimation problems:

(1) RQ1: How to effectively generate synthetic data?
e RQ1.1: How can we model wheelchair users?
e RQ1.2: What are the controlling parameters in synthetic
data generation?
(2) RQ2: What are the efficacies of synthetic data?
e RQ2.1: How do individual parameters of synthetic data
generation affect pose estimation performance?
e RQ2.2: What are the benefits and drawbacks of using
synthetic data?

To summarize, our contribution is three-fold:

e adoption of data synthesis to improve inclusion of Al

e a custom data-synthesis pipeline for pose tracking with im-
proved performance for wheelchair users.

o investigations of the efficacy of the overall approach.
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Figure 2: Examples of poor keypoint prediction performance from Detectron2 ImageNet [108]. Figure 2(a) Poor prediction of
the legs and torso which are slightly occluded by the wheelchair. Figure 2(b) Both shins are predicted to be on the hand due to
the occlusion of the wheelchair. Figure 2(c) Legs are predicted to be on the upper body. Figure 2(d) The right shin is predicted to
be on the wheels of the wheelchair. Figure 2(e) The wheelchair dancer is completely undetected by ImageNet.

2 RELATED WORK
2.1 DPose Estimation

Pose estimation plays a key role in fields like the animation and
video industry [1, 89]. Developments in deep learning have enabled
users to circumvent the need for cumbersome marker suits in tradi-
tional motion capture and directly generate human postures from
camera outputs [3, 66, 109, 114]. Of particular note is 2D posture
recognition, where the recent releases of easily accessible pipelines
like MediaPipe [65], OpenPose [20], and BlazePose [12] have en-
abled widespread access to posture recognition in a wide variety of
applications including biomechanics [72], autonomous driving [2],
sign language interpretation [71], and more.

2.2 Sensing for People with Limited Mobility

Currently, over 8.5% of the population of the world is age 65 or
over. This number is projected to grow to nearly 17% of the world’s
population by 2050 [44]. Given the direct correlation between age
and and mobility limitations and disabilities, this trend implies a
growing need for mobility-related technologies [32, 33, 36]. Our
research focuses on the community of wheelchair users, where
technologies like SpokeSense [22] have established themselves as
a part of a broader focus in research related to developing smart
wheelchairs [55] which integrate different sensors, including cam-
era, lidar, and EEG, to make wheelchairs more comfortable and safe.
Other works focus on developing more accessible control systems
[98] or routing systems [53] for users with mobility impairments.
Posture estimation techniques for wheelchair users can reveal a
user’s sitting habits, analyze their mood, and predict health risks
such as pressure ulcers or lower back pain [67].

2.3 Synthetic Data for Computer Vision

Computer vision models have traditionally been trained using large-
scale human-labeled datasets such as PASCAL VOC [30], Microsoft
COCO [64], and ImageNet [24]. While effective, these datasets are
costly to produce, requiring large amounts of publicly available
images, manpower, and time to create. Furthermore, these datasets
are often static and offer little in the form of customizability to allow
researchers and engineers to use data specific to their task. One
solution to these problems is the use of data simulators. SYNTHIA

[82], Synscapes [107], Hypersim [81], and OpenRooms [61] pro-
vide synthetic datasets for computer vision tasks related to object
detection in different settings. Other robotics simulators including
AI-2THOR [54], NVIDIA Isaac Sim [62], Mujoco [93], and iGibson
[86] offer a rich set of tools for embodied AI tasks. Other systems,
like BlenderProc [25], BlendTorch [45], NVISII [70], and Unity Per-
ception [11] prefer to instead enable the developer to generate their
own data through highly configurable simulators. These tools and
datasets have already demonstrated considerable success in deep
learning-related training tasks [6, 43, 91].

Synthetic humans provide further challenges due to the complexi-
ties of human bodies and the variations and limitations of a human’s
appearance and posture. Various approaches have been taken, using
different types of simulators to generate labeled datasets. Examples
of different approaches include deriving data from hand-crafted
scenes [9], custom 3D scenes with SMPL models [13, 76, 78, 79, 100,
111], existing games like Grand Theft Auto V [18, 19, 31, 48, 49],
and game engines [27, 28]. We were inspired by this line of work
and extended upon the existing PeopleSansPeople (PSP) data gen-
erator with the Unity Perception package [11] using domain ran-
domization principles which help Al models trained in simulated
environments to effectively transfer to real-world tasks [92].

2.4 Evaluating the Quality of Synthetic Data

Despite the advantages of data synthesis, an implicit assumption
of using synthetic data is that it should be sufficiently high-quality
to achieve performance similar to real data. To evaluate the quality
of synthetic data, researchers have explored a wide range of met-
rics. Emam et al. [29] outlined three types of approaches to assess
synthetic data utility in their book - workload-aware evaluations,
generic assessments, and subjective assessments of data utility.
Among them, workload-aware evaluations check if synthetic data
replicates the performance of real data, widely used in data synthe-
sis research [35, 77, 101]. Generic assessments measure the utility
indicators of real and synthetic data when the indicators are quan-
tifiable and clear [46, 52] (e.g., the distance between their statistical
indicators such as mean, average, and distribution). Furthermore,
subjective assessments involve real users to evaluate data realism.
Some researchers investigate distinguishability, assuming highly-
realistic synthetic data leans to be perceived as real [87], similar
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to deploying a discriminator in algorithms [96]. Other researchers
design Likert-Scale questionnaires for realism, which are broadly
adopted in clinical training simulation [11]. Another criterion is
to collect user preferences between several synthetic samples to
form a high-quality dataset [90, 105]. With a consistent and valid
examination of synthetic data, researchers can obtain feedback to
improve generation methods and understand how reliable synthetic
data is. In our work, we not only conduct workload-aware evalua-
tion but also involve subjective assessments by asking real users to
evaluate the data realism. The user-in-the-loop process provides
filter handles for more realistic datasets under various contexts and
inspires key findings on how data realism affects performance.

3 WHEELPOSE DATASET SYNTHESIS

We address (RQ1.1) with our system, WheelPose, a data synthe-
sis framework where motion data is converted to wheelchair user
animations and rigged on human models in a Unity simulation envi-
ronment to generate synthetic images and annotations. We present
a simple simulation environment, with human models randomly
placed in front of a background as the most primitive example of
synthetic data still capable of generating positive results in pose
estimation (Section 4.3). A visualization of the overall pipeline is
found in Figure 1. Our pipeline generates a set of datasets, each
including 70,000 captured frames (1280 x 720). Each frame is fully
annotated using the COCO 17-keypoint 2D skeletal model, shown
in Figure 5(b). Beyond the fact that our dataset is the first fully
annotated dataset of wheelchair users, the size of our dataset is
comparable with existing datasets like 3DPW with 51,000 captured
frames [69] or SMPLy with 24,428 captured frames [57]. Example
synthesized data is shown in Figure 3.

3.1 Generating Postures

Our data synthesis pipeline begins with pose generation, where
motion data is converted into animations to be used in data synthe-
sis. We choose to use two motion data sources, HumanML3D [39]
and Text2Motion [40] in our case study. Other motion sources can
be easily adapted and used within our pipeline. Figure 4 demon-
strates 14 motion sequences and their resulting postures from our
pose generation, documented next. We separate posture generation
from the rest of our pipeline to allow developers to iterate upon
generated postures through human evaluation, regenerating and
filtering data as needed.

3.1.1  Human Skeletal Modeling. In order to enable a wide variety
of different postures, we base the implementation of WheelPose
on a 23-keypoint skeletal model, which is easily converted from
commonly available human posture datasets including COCO [64]
and MPII [7] and the output of common pose estimation algorithms
including BlazePose [12], MediaPipe [65], and OpenPose [20]. De-
tailed information on these keypoints is shown in Figure 5(a). We
note that our current pipeline assumes users have all four limbs and
acknowledge that data synthesis for wheelchair users with amputa-
tion requires efforts beyond simple ad-hoc removals of key points
in our current model. Nonetheless, we interviewed two participants
with limb loss, leading to insights for future work which we will
discuss later in the paper (Section 4.1).

Huang, et al.

Figure 3: Example output from the full WheelPose data gen-
eration pipeline. The top row includes the generated RGB
images. The bottom row includes the generated RGB images
with the keypoint and bounding box annotations superim-
posed on top. Keypoints outlined in black are labeled as "oc-
cluded" while keypoints outlined in white are labeled as "vis-
ible". Each image is generated with randomized backgrounds,
lighting conditions, humans, postures, and occluders.

Figure 4: Example pose frames in their motion sequences
resulting from our pose frame generation. Each column is an
individual animation with pose frames selected in chrono-
logical order from back to front.

3.1.2  Motion Sequence Generation. We use HumanML3D [39], a
3D human motion dataset collected from real-world motion capture
in the form of 3D joint positions as an example of motion sequence
generation from existing motion capture datasets. Motions with
high translational movement, high lower body movement, and bro-
ken animations (e.g., jittering, limb snapping, unrealistic rotations)
were filtered out from HumanML3D. Individual motions were then
randomly sampled and evaluated for their uniqueness and range
of motion compared to previously collected data until 100 unique
motions were collected.
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Figure 5: Keypoint mappings used in WheelPose. Figure 5(a)
WheelPose 23-keypoint animation format. Used as the input
format of motion sequences before pose modification. Figure
5(b) COCO 17-keypoint annotation scheme. Used as the final
output format of WheelPose annotations.

Additionally, we leverage Text2Motion [40], a motion genera-
tion model that uses textual descriptions to generate motions, as
a fully generative alternative source of human motion sequences.
Text2Motion is only one example of human motion generation
through textual descriptions [8, 112, 113] and can be easily sub-
stituted in our data generation pipeline. Evaluators from the re-
search team assigned textual descriptions to each of the 100 se-
lected HumanML3D motions before inputting the descriptions into
Text2Motion and generating 3 potential motions for each descrip-
tion. The most realistic motion was selected and evaluated on
whether the motion would be possible for the evaluator to per-
form and the absence of any noise or artifacts from the generation
process that may lead to unrealistic limb movements or positions.
Our Text2Motion generation process results in a new dataset of
100 human motions that directly mirror the actions of the sampled
HumanML3D motions and provide a direct comparison between
synthesized and real data. Our goal in enabling the use of genera-
tive motion models like Text2Motion is to investigate the feasibility
of using generative deep learning models to further simplify the
data collection process for synthetic data generation and therefore
improve the efficiency and overall accessibility, especially in the
context of users with disabilities and assistive technologies.

In total, this process yielded 200 motion sequences from both Hu-
manML3D and Text2Motion (i.e., each yielded 100 sequences). On
average, HumanML3D motions had 60.26 (SD=42.05) unique frames
per animation and Text2Motion has 146.32 (SD=50.84) frames per
animation. Since Text2Motion has no set animation length parame-
ter, we choose to take the full animation output for each motion,
leading to the discrepancy in average motion lengths, to directly
compare data sourced from motion capture and deep learning mod-
els. Text2Motion outputs tend to extend and slow down the de-
scribed action, leading to a longer but not necessarily more diverse
animation compared to HumanML3D.

3.1.3  Pose Modification and Conversion. Both HumanML3D and
Text2Motion represent motions through the 3D position of joints.
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All motions are converted into the corresponding 23-keypoint skele-
tal model used by WheelPose through a direct mapping of corre-
sponding joints or the positional average between the surrounding
joints. As is common in biomechanical analysis [10, 85], a 5Hz low
pass filter is then applied to the data to handle high-frequency noise
generated from the motion capture or data generation process. We
convert all motions from a 3D position to a joint rotation repre-
sentation. In the process of this conversion, internal and external
rotations — rotations around the axis parallel to the bone not able
to be described in joint position notation - of the arms are affixed
to the rotation of the parent bone.

We modified the resulting pose sequences from the two gener-
ation methods by affixing the model’s legs onto the wheelchair
model with an additional rotational noise applied independently on
the flexion/extension, abduction/adduction, and internal/external
rotation on each of the lower body bones (i.e. three joints in total) to
simulate regular lower body movements when in a wheelchair. The
following steps document the procedure for generating rotational
noise on one joint. This procedure was motivated by the need for
smooth interpolated noise and inspired by the Poisson process.

Given an array of joint angles Fyrig expressed in degrees with
length n total frames in the animation, the noise is generated by
first sampling a set of frames indices S.

x0 =0,
xi =xi—1+ki,
S = %0, %1, . Xn | ki ~ N(4,(35)?), (1)
xXj <n,
i=12,.,n
A new array of joint angle noise values N is then constructed.
Let f(i) be a function that generates the i-th joint angle of the
animation. Given U ~ U(-10, 10), representing a random angular
noise added to frames in S,

iesS
fl) = {NaN else @
=[f(@)10<i<n] )

Linear interpolation is then applied to fill in all NaN values in N.
The new array of joint angles Fye,, is thus the element-wise sum of
Forig and N. Our algorithm is motivated by the need for a simple
and efficient noise algorithm that does not jitter as the user iterates
through frames of the animation.

Fnew = [forig[il + N[i] | 0 < i < n] (4)

All motion sequences are applied to a Blender! model before be-
ing imported into Unity and converted to Unity Perception-readable
AnimationClips files. Example outputs from our posture generation
step described above can be found in Figure 4.

3.2 Generating Wheelchair User Models

In order to capture synthetic images, we must rig the postures
resulting from previous sections onto Unity human models.

1A free and open source 3D modeling software. More information is found at https:
//www.blender.org/
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Figure 6: Example human models used in the synthesis of
wheelchair user images.

For human models, WheelPose enables both the default human
models provided by PeopleSansPeople [28] and randomized humans
leveraging the Unity SyntheticHumans [4], a Unity Perception
package using domain randomization to generate unique human
models from a sampling of different clothes, body types, sexes, and
more. This utilization allows WheelPose to generate unique human
models that better capture the wide variety of appearances of real
people. We use 8,750 unique human instances using the default
SyntheticHumans configuration limited to people over the age of
10 to better reflect the general population of people in wheelchairs
[103]. Figure 6 shows 19 examples of these human models.

We also enable the human models to spawn with different objects
(e.g., wheelchairs, crutches, canes, walkers, etc.) in user-defined
positions when placed into the environment. For the scope of
this project, we focused on wheelchair users and used a realis-
tic wheelchair model, sourced from the Unity Asset Store, scaled
by the size of the human model. Finally, the posture of each human
model is randomly sampled from the AnimationClips generated in
Section 3.1.

3.3 Generating the Simulation Environment

We address (RQ1.2) by developing a highly configurable simulation
environment. We use the PeopleSansPeople (PSP) [28] base tem-
plate and its related extension, PSP-HDRI [27], as our baseline data
generator built in the Unity? game engine through the High Defi-
nition Render Pipeline (HDRP). PSP is a parametric human image
generator that contains a fully developed simulation environment
including rigged human models, parameterized lighting and cam-
era systems, occluders, synthetic RGB image outputs, and ground
truth annotations. PSP is built on the idea of domain randomization
[92] where different aspects of a simulation environment are inde-
pendently randomized to diversify the generated synthetic data,
exposing models to a wider array of different environments dur-
ing training and improving testing accuracy [94, 99]. All domain
randomization is implemented through the "randomizer" paradigm
designed in the Unity Perception package [15], a Unity toolkit to
generate synthetic data for computer vision training. Within each
scene, individual randomizers are assigned to a specific parameter
(i.e. lighting, occluder positions, human poses, etc.) and indepen-
dently sample parameter values from a uniform distribution. PSP
was then updated to Unity 2021.3 and Unity Perception 1.0.0® which
enabled more annotations, more extendable randomizers, and flexi-
bility with other Unity packages. We then added a new background

2More information found at https://unity.com/
3First official release of Unity Perception
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image parameter and its related randomizer for the sampling of
user-defined images to be used as a backdrop in each scene. We use
this parameter to enable three different sets of background images:
PSP default textures, 100 background images randomly sampled
from the BG-20k background image dataset [58-60], and 100 gen-
erative images from Unity SynthHomes [97], a dataset generator
for photorealistic home interiors. Table 1 outlines the statistical
distributions of the environment parameters used.

3.3.1 Camera Configuration and Keypoint Annotations. A main
camera in the Unity scene is used as the primary capture source of
all images and annotations. The Unity Perception Perception Camera
is used to simulate realistic camera features including focal length
and field of view (FOV) and to capture all annotations. The position,
rotation, focal length, and FOV of the main camera are set through a
series of randomizers with default parameters found in Table 1. The
main camera captures RGB, depth, surface normal, and instance
segmentation images in 1280 X 720 for each frame of captured data.
Default Unity Perception annotation labelers are placed on the main
camera to capture 2D/3D bounding boxes for each human model,
object counts, rendered object metadata, semantic segmentation,
2D/3D keypoint locations in COCO format, and percent of human
model occluded. Out-of-view and fully occluded human instances
are automatically ignored in annotation capture, recording only
data on human instances within direct view of the main camera.

3.4 Assembling WheelPose Datasets

Overall, our pipeline yields 70,000 images for each generated dataset.
All data was generated in a Unity 2021.3 project configured with
parameters preset to the values listed in Table 1. We ran our data
synthesis pipeline on a PC with a 4.2GHz 6-Core/12-Thread AMD
Ryzen R5 3600, NVIDIA GTX 1070 8GB VRAM, and 32 GB 3600MHz
DDR4 memory for an average generation time of ~ 1 hour and 45
minutes for 10,000 images — which translates to 12 hours and 15
minutes for each dataset. This time includes all steps of the gen-
eration process including motion generation, parameter random-
ization, data capture, label creation, and writing to disk. Examples
of generated synthetic images are shown in Figure 7. We open-
source our data synthesis pipeline including pose modification and
the full configurable Unity 2021.3 project for data generation in
https://github.com/hilab-open-source/wheelpose.

4 EVALUATION OF WHEELPOSE

To answer (RQ2) on the benefits and drawbacks of synthetic data,
we evaluate the WheelPose pipeline and generated data through
three specific methods: 1) human evaluation on realism, 2) statistical
analysis of innate dataset characteristics, and 3) evaluation of our
generated datasets’ effects on Al model performance. We document
the results of these methods in the following sections.

4.1 Human Evaluation

We involved real wheelchair users in the loop to evaluate the realism
of our synthetic data. In our study, “realism” manifests as ease and
frequency. We sent out online surveys and strictly verified users’
eligibility and authenticity manually to prevent scammers. We re-
cruited 13 daily wheelchair users (5 F, 8 M), with ages ranging from
26 to 56 (M=32, SD=9.6), as shown in Table 1. A key limitation of
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Figure 7: Examples of a scene being generated. Notice the random placement of wheelchair users, different occluder objects,
different lighting conditions, and various SynthHome backgrounds. The red, green, and blue arrows represent the camera
coordinates which we used to insert randomization in forms of Cartesian translations and Euler rotations.

this research is the limited diversity among the wheelchair user par-
ticipants. All participants were individuals with spinal cord injuries
(SCI), a specific condition that has distinct movement patterns. This
represents only a small subsection of the broader wheelchair user
population. Despite our efforts to diversify the participant pool by
including participants with different levels of SCI, we acknowledge
that our participant population is not sufficiently representative to
draw statistical insights for wheelchair users with different condi-
tions or bodies than those in this study (e.g., muscular dystrophy,
amputations, dwarfism, spinal deformities).

4.1.1  Procedure. Participation was conducted entirely online, al-
lowing users to contribute at their convenience. Users first answered
a questionnaire consisting of demographic information and mo-
bility capability before then evaluating two groups of synthetic
motions - HumanML3D motions and Text2Motion motions, using
a browser-based user interface (Figure 8). The motions were pre-
sented as animation GIFs of a human skeleton performing a certain
movement. We chose to use skeletons rather than a more photoreal-
istic model as an embodiment technique facilitating users to think
of these skeletons as tracked motion of their bodies. Related work
[34] has shown that a dummy avatar provides stronger senses of
embodiment comparable to non-personalized realistic avatars. Our
uses of the skeletal model aim to shift the focus towards motion,
steering attention away from superficial cosmetic details. Users
observed one animation clip at a time, simultaneously from four
perspectives (45-degree oblique top view, top view, side view, and
front view). To navigate through motion clips, users click the previ-
ous/next buttons or press the arrow keys. Buttons were designed
for participants to select scores for two Likert-Scale questions.
For each motion, users answered three questions:

e Q1: “How difficult is it for you to do this motion?” - by rating
from 1 (Cannot perform the sequence at all) to 7 (Without
any difficulty).

e Q2: “How often do you do this motion?” - by rating from 1
(Never) to 7 (Everyday).

e Q3: “Have you seen or do you know of other wheelchair
users who perform this motion?” (Yes/No).

We used all 100 motions in both HumanML3D and Text2Motion
converted motion sets. After finishing the last animation GIF, users
proceeded to the other motion group. The question set is consistent
for both groups. The order of groups was random. Three users

evaluated HumanML3D first, while the others saw Text2Motion
first.

After all animations were scored, we followed up with partici-
pants via email to better understand the following:

(1) What are the criteria used in your evaluation of a motion’s
difficulty?

(2) What determines the "frequency" of performing a motion?

(3) What motion do most wheelchair users often perform and
what motion do you frequently perform, that did not show
up in our dataset?

Participants were paid $20 per hour as compensation for their
time. As the study did not enforce a time limit and was purely
online, users could take a brief break whenever they wanted as
long as the questionnaire remained open. Excluding breaks, the
study took 1.78 hours on average. The study was evaluated and
approved by the Institutional Review Board (IRB) at UCLA.

4.1.2 Data Analysis. User responses were Likert-Scale scores (1-7
for Q1 and Q2) and binary responses (yes/no for Q3). We first visu-
alized the distribution of data across users (Figure 9). Afterward, we
separately ranked the motions based on average ease and frequency
scores. We also calculated the correlation between difficulty and
frequency. From follow-up emails, we collected their comments
and performed a thematic analysis of their perception of metrics,
and the validity of our dataset. The initial codes were the summary
of their rating reasons, which were later merged and discussed. In
the end, we ranked Text2Motion motions by the total frequency
and difficulty score and identified the bottom 10% for later use in
the model performance evaluation.

4.1.3  Results and Findings. User perception of the generated dataset
(i.e., perceived realism) is a strong indicator of the efficacy of our
data generation pipeline in that efficient data generation should
only yield data that wheelchair users perceive as being realistic.
Investigating deeper causes for the perceived realism of our gener-
ated data also inevitably led to insights about wheelchair users. We
summarize the findings of our user evaluation in the rest of this
section.

Participants found our synthetic motion sequences realis-
tic. HumanML3D motions received an average ease score of 4.742
(SD=0.943) and an average frequency score of 4.079 (SD=1.085)
across the dataset. Text2Motion motions performed comparably,
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Table 1: Demographics of participants (P1-P13) in human evaluation.

ID Age Gender Occupation SCI Level Exercise Routines Full Mobility of Arms, Shoul-
ders, and Hands
P1 56 M Professor T-12/L-1 No Yes
P2 29 F Home-maker T-3 Weight lifting, Strolling, and Stretches Yes
P3 40 M Entrepreneur T-12 Swimming, Cycling, and Gym Yes
P4 40 F Self-employed C-5 No No (DASH Score 79.2/100 [50])
P5 36 M Customer Relations C-5 Stretching and Strength training No
P6 26 M Software Developer Lumbar spinal stenosis Wheelchair walking Yes
P7 51 M Proctor/Graphic Designer T-12; L1 Gym workouts periodically, Wheelchair Bas- Yes
ketball, Wheelchair Tennis, and Pushing long
distances

P8 26 M Librarian C7 No No (DASH Score 40.0/100 [50])
P9 27 F Remote Computer Programmer L5 Arm training using a band Yes
P10 27 F Teacher Lumbar SCI Aquatic therapy Yes
P11 32 F Receptionist Thoracic SCI Aerobic exercise Yes
P12 34 M Marketing Manager Sacral SCI No Yes
P13 29 M Freelancer Lumbar SCI Water exercise Yes

\y\ [ £ Q1: How difficult is it for you to do this motion?

' | ‘\\(/ oCannot perform the sequence at all.

’\:[ I oCan barely perform the sequence.

/~‘ [ 4 | >With considerable difficulty.

>Neither easy nor difficult to perform.

oWith some difficulty.

oWith very minor difficulty.

oWithout any difficulty.
Q2: How often do you do this motion?
oNever

ORarely (once a month or less)

oOccasionally (a few times a month)
>Sometimes (once a week or so)

>Often (several times a week)

oVery Often (almost every day)

OEvery day
Q3: Have you seen or do you know of other
wheelchair users who perform this motion?
oYesoNo

Figure 8: Screenshot of the human evaluation interface. Note that the four subplots on the left are supposed to show an
animation of a human skeleton performing a motion sequence in loops from different perspectives (45-degree oblique top
view, top view, side view, and front view). Participants were asked to observe an animation and give Likert-Scale scores and a
binary response before moving on to evaluation of the next motion sequence.

receiving an average ease score of 4.977 (SD=0.915) and an aver-
age frequency score of 4.507 (SD=0.889). Regarding Q3, for each
motion we presented, our participants had seen or knew of other
wheelchair users who performed that motion. Specifically, as Figure
9(g)(h) shows, most participants have seen most motions performed
by other wheelchair users.

Regarding the representativeness of datasets, most participants
said they had seen all of the common motions (e.g., “rolling for-
ward”, “driving”, “writing”, “drinking”, “cooking”) they knew about
in our datasets. We suspect two factors that account for the out-
comes observed in these participants: 1) lack of contextual cues
made it challenging for them to recall specific motions, and 2) our
embodiment technique facilitated their use of imagination that
bridged the gaps between the motions we demonstrated and those
they executed in daily tasks. Nevertheless, some other participants
commented on popular but missing motions, including “wearing
some lower body clothes” (P10), “clapping hands” (P11), “typing on
a keyboard” (P13). The rest of the users were unsure about their

recollection of the datasets and used general phrasings e.g., “seen al-
most all”. Our datasets were not comprehensive enough to cover all
common motions. We believe user feedback is the key to improving
data completeness and representativeness.

Ease (Q1) and frequency (Q2) of performing a motion vary
across participants. From Figure 9(a) to Figure 9(d), we observe di-
versity of perception on ease and frequency across individuals. The
horizontal axis is participant ID, the vertical axis is the percentage
of motions in the whole group. The sequential color palette depicts
the ease of doing a motion from 1 to 7, with 7 being very easy. For
example, P4 and P5, who had a higher injury position, rated more
motions into the difficult pool. The takeaway is that the ease and
frequency of performing a motion are highly personal. A realistic
motion dataset should include motions across the entire spectrum
while eliminating motions that no wheelchair users will ever per-
ceive as being easy/frequent to perform. However, the result of this
user evaluation would change as the size of the participant group
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Figure 9: From left to right, Figure (a)(b)(c)(d) are 100% stacked bar charts showing the motion distribution in HumanML3D
or Text2Motion, with (a) and (b) depicting the perceived ease and frequency of HumanML3D, while (c) and (d) depicting
Text2Motion. In (a) and (c), a score of 1 denotes Cannot perform the sequence at all while a score of 7 denotes Can perform
without difficulty. In (b) and (d), 1 means Never, and 7 means Everyday. The two scatter plots, Figure (e) and (f), demonstrate the
strong correlation between ease and frequency in both motion groups. Figures (g) and (h) depict stacked bar graphs showing
whether participants have seen or known of a wheelchair user who has performed this motion.

grows, which lowers the likelihood of unrealistic motions. Nonethe-
less, we argue that a realistic dataset should include motions that
most wheelchair users would perceive as easy and frequent, to
ensure the data quality and avoid introducing new biases, while
addressing existing issues in the inclusiveness of data collection.
Our human evaluation serves as a reference for conducting user
assessments of data quality in motion synthesis.

There was a strong correlation between ease and frequency.
The last two scatter plots (Figure 9(e)(f)) showcase a strong posi-
tive correlation between ease and frequency. In other words, less
difficulty was associated with a higher frequency of usage. The Pear-
son correlation coefficients [84] are respectively 0.956 and 0.959
for Text2Motion and HumanML3D. This result was expected for
motions that are difficult to perform for wheelchair users being
less frequently performed because they are often circumvented
by alternative motions, which was confirmed by comments from
participants later on.

Factors on ease: range of motion, pain, balance, and tiredness.
Participants evaluated how easy a motion was with several factors.
7 out of 13 people highlighted their range of motion using keywords
“range of motion”, “being paralyzed”, “based on my abilities”, “consid-
ering the angles” Six participants mentioned that pain affected their
decisions. Regarding tiredness, P2 explained “Since I have no core
muscles, being paralyzed from the nipple line down, a lot I can do,
but can’t do for long”. Besides, P2, P4, and P5 emphasized balance.
For example, P2 commented “My left side is a little higher on my
injury, so I struggle a lot with that side, or even staying upright when
both hands are in use.” Their perception of ease was reflected in
Likert-scale scores in Figure 9 (a)(c).

Factors on frequency: utility and ease. How frequently one
would make a motion depended on both utility and ease. This
explained why the correlation coefficient was strong but not definite
(e.g., R=0.99). An easy motion did not necessarily lead to frequent
usage. Participants determined frequency mainly based on their
routine. P1 commented, “Cooking, cleaning, driving, shopping... based
on where/when/how I might use the motion, I decided how often
I might actually use the motion” Along with P1, six more users
recalled their daily routine when rating for the frequency. P3 and
P8 also referred to exercises/therapies to define the frequency of
each motion.

On the other hand, when difficulty and utility had conflicts,
participants were experts in circumventing them with alternative
motions if possible. P4 explained, “I'm limited in my arm functions
with putting hands or arms over my head and behind my back... so
I use straps on shoulders and high back on my wheelchair” P5 also
commented on how he used elbows and hands to support himself
without abdominal muscles when needed, “As a tetraplegia, I don’t
really have abs. So, I'm kinda ‘crawling’ to get back up. Propping
myself up with elbows on knees and such.”

Sense of embodiment. Results show that our uses of the skeletal
model successfully facilitated the sense of embodiment — partic-
ipants could think of the human model as their own body, and
imagine themselves performing those motions when evaluating the
ease and frequency. P1 commented, “I mimicked the motions and
tried to decide when/how I would use the motion”. Similarly, another
comment said, “I picture myself doing certain tasks throughout the
day, or motions I use for exercise” On this note of sense of embodi-
ment facilitation, we also chose not to attach text descriptions to
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animation clips, but encouraged users’ imagination by allowing
them to interpret the visuals on their own.

We expanded our study and recruited two new amputee partic-
ipants (U1l and U2, not from P1-P13). They (1F, 1M) both had an
artificial leg and used wheelchairs every day. We asked open-ended
questions about their expectation of pose estimation, including but
not limited to an amputated skeleton, the integration of artificial
limbs, and the desired features/interfaces for pose estimation. To
increase the sense of embodiment, U1 and U2 both proposed using
an amputated model that accurately represented their body. For ex-
ample, U1 commented, “To be accurate I think the skeleton should
be amputated to maintain accurate pose estimations.” Similarly, U2
said the model “should be able to be customized to meet different
users with different amputations” However, expectations changed
when artificial limbs came in. U2 talked about our research’s reflec-
tion of his artificial limb, and said “The skeleton should adapt to
work together with the artificial part that is added” Meanwhile, U1
insisted the integration of artificial limbs depended on users, saying
“I think should allow users to access settings and have a choice of
their own.” As for the feature/interface, both U1l and U2 mentioned
a settings panel to annotate where a person was amputated, and
U1 further suggested an option to turn on/off the integration of
artificial limbs.

4.2 Statistical Analyses

We performed a set of statistical analyses to examine how the diver-
sity and size of our dataset compare to the full COCO 2017 persons
dataset (training and validation) [64], selected as our benchmark
for its ubiquity in other 2D human pose estimation related research
[21, 88, 110]. Greater diversity and size in training datasets has
been shown to improve machine learning performance [37] and is a
common solution to prevent overfitting. We consider the following
categories in our analyses: high-level dataset features, bounding box
location, size, and number in generated images, keypoint number
and occlusion per image and instance, diversity of human poses,
and camera placement. For all subsequent dataset statistics, we
used the WheelPose-Gen dataset, which was generated with no
real-world data using SyntheticHumans models, Text2Motion ani-
mations, and SynthHome background images. The other datasets
from WheelPose shared similar statistics and were skipped in this
validation to avoid redundancy.

4.2.1 High-Level Dataset Features. In total, our dataset has 70,000
images with bounding boxes and keypoint annotations. We chose
to generate 70,000 images to mimic the size of the COCO dataset.
For reference, a recent effort in synthetic data has proven that a PSP
dataset of as little as 49,000 images was found to have meaningful
pose estimation improvements in Detectron2 fine-tuning [28].

Our dataset contains 296,508 human instances, of which 271,803
instances have annotated keypoint labeling. Note that not all human
instances have annotated keypoints because some human instances
had no joints within the camera’s view despite still being visible.
In comparison, COCO has 66,808 images with 273,469 human in-
stances, of which 156,165 have annotated keypoints. This difference
in human instances and annotated keypoints are both due to out-
of-view keypoints like in our dataset, and a lack of keypoint labels
due to human labeling errors.

Huang, et al.
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Figure 10: Bounding Box Statistics. All COCO statistics
are computed for images that contain at least one per-
son instance in COCO. Figure 10(a) Number of bound-
ing boxes per image. Images with no human bounding
boxes are not counted as COCO is not a purely human
dataset. Figure 10(b) Relative area of each bounding box com-
pared to the image area. Relative area is computed through
y/bounding box area/image area. Figure 10(c) Heatmap of
bounding box location scaled by image size. The color of
each pixel maps to the likelihood of that corresponding co-
ordinate in an image being bounded by bounding boxes. The
peak location of the heatmap is marked with a green +.

4.2.2 Bounding Boxes. We analyze the bounding box annotations
by generating a set of statistics comparing WheelPose-Gen against
COCO (Figure 10) to evaluate the diversity of the frequency, place-
ment, and size of human instances. We find that WheelPose-Gen
contains a more even distribution of the number of bounding boxes,
or human instances, per image compared to COCO, indicating a
greater diversity of images featuring wheelchair users in differently
sized groups (Figure 10(a)). The COCO dataset does however have
a higher concentration of images with large amounts of human
instances within them, most likely due to the number of images
depicting crowds of people. We also calculated the area of the
bounding box relative to the overall image size to analyze the size
of individual human instances (Figure 10(b)). Here, we observe that
our bounding boxes have slightly more evenly distributed sizes
in relation to the image size when compared to COCO. Note that
our dataset consists of images of a uniform size (1280 X 720), and
COCO contains a wide variety of different image sizes up to a max-
imum size of 640 X 640. Thus, images with the same relative size
in relation to the image dimensions are still a higher definition in
WheelPose-Gen comparatively.
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We then analyze the spatial distribution of bounding boxes by
plotting a heatmap of bounding box locations for both WheelPose-
Gen and COCO (Figure 10(c)). We note that the location of bounding
boxes is a direct product of the human generation, occluder, and
camera randomizers and acts as a quantification of their effects. For
both datasets, we overlay the bounding boxes with their location
scaled by the overall size of the image. For the COCO dataset, we
observe a majority of bounding boxes are centered in the middle
of the image. We also observe that WheelPose-Gen has a wider
bounding box distribution with more spreading into the top edge
of the image compared to COCO, indicating our randomization
parameters create a more even spread of human instances across
the image with more examples of humans at the edge of the camera.
The center of the distribution of bounding boxes in WheelPose-Gen
is also slightly higher in the image than that of COCO.

4.2.3 Keypoints. We first measure the probability of a keypoint to
be one of the three predefined COCO occlusion levels (not visible,
occluded, visible) in WheelPose-Gen and COCO as further quan-
tification of the effects of the randomizers listed previously. In the

bounding box height

context of WheelPose, not visible is when a keypoint is not in the
image and has no prediction, occluded is when a keypoint is in the
image but not visible (e.g., behind an object), and visible is when
a keypoint is seen in an image. Here we see that WheelPose-Gen
displays a significantly smaller probability of having nonvisible
keypoints and a more uniform distribution of keypoints compared
to COCO (Figure 11(a)). We also notice that WheelPose-Gen has
a far higher probability for a keypoint to be labeled as occluded
compared to COCO, especially in the hips (Figure 11(b)). This can be
explained by the different methods both datasets used in keypoint
annotation. While WheelPose-Gen uses a self-occlusion labeler de-
fined in PSP which computes the distance between each keypoint
and the closest visible part of the object within a threshold to de-
termine occlusion labeling [28], COCO is a fully human-labeled
dataset. Within human annotators, there are variations between
how an annotator might define and classify as occluded and not
visible. WheelPose does not suffer from the same issue as the labeler
has information on the full 3D scene and can precisely identify ev-
ery keypoint location over a human annotator who only has access
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to a single 2D view with no additional context. This phenomenon
can be further seen in the probability of keypoint visibility, where
WheelPose-Gen displayed a higher probability for all keypoints
except the two keypoints on hips (Figure 11(c)) where many hip
keypoints are labeled as occluded due to the self-occlusion of the
wheelchair.

We evaluate the diversity of our poses by creating a heatmap of
keypoint annotations locations scaled by the corresponding bound-
ing box in WheelPose-Gen and COCO (Figure 12). WheelPose-Gen
displays a wider distribution of potential keypoint locations in up-
per body keypoints compared to COCO. Lower body keypoints
display a smaller distribution due to the limitations of postures in a
wheelchair. We see for asymmetrical keypoints (left/right wrist),
WheelPose-Gen is far more evenly distributed across the X axis
compared to COCO, a clear indication of a more even distribution
of front, side, and back-facing human instances. We also notice a
smaller Y-axis distribution in WheelPose-Gen due to the presence
of the wheelchair limiting potential movements up and down.

4.2.4 Camera. Finally, we quantify the variations in our camera
placement and rotation. Recent studies have shown the critical im-
pact of diverse camera angles on model performance in 3D human
recovery problems [18, 68, 75]. We visualize our diversity of camera
angles and distances and observe a wide distribution of potential
elevations, azimuths, and distances (Figure 13). We then sample a
set of camera locations relative to individual human instances and
visualize their angle around the instance to observe full coverage
of camera angles all around instances (Figure 13(d)). All visualiza-
tions indicate a loosely followed Gaussian distribution with a wide
variety of different camera angles. We do not compare these sta-
tistics with COCO since it does not include camera configuration
information. Our camera configuration parameters can be found in
Table 1.

4.3 Model Performance Evaluation

4.3.1 Testing Dataset. There currently does not exist an image
dataset focused primarily on wheelchair users. For the testing of our
system, we create a new dataset of 2,464 images of wheelchair users
collected from 84 YouTube videos in a similar data collection process
as other computer vision works [7, 104]. A set of 16 action classes
consisting of common daily tasks wheelchair and able-bodied users
both perform and unique wheelchair sports were selected (e.g., talk-
ing, basketball, rugby, dancing, etc.). Action classes are listed in
Table 2. Videos are collected through keyword searches revolving
around each of the action classes. Annotators iterate through 500
equally spaced frames (minimum one-second intervals) from each
video and identify frames with poses and settings sufficiently differ-
ent from the previously collected images. Annotators ensure that
there is a wheelchair user within view for every collected frame.
Crowd worker involvement is then utilized to annotate bound-
ing boxes and keypoint locations on collected images. Researchers
manually validated results from this process for accuracy. Exam-
ples of this dataset can be found in our open-source repository at
https://github.com/hilab-open-source/wheelpose.

4.3.2  Training Strategy. Similar to training outlined in PSP-HDRI
[27], all of our models in this evaluation utilized ResNet-50 [42] plus
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Figure 13: Distribution of Potential Camera Angles and Dis-
tances. Figure 13(a) Distribution of elevation angle (up-down,
positive indicating a camera above the nose and looking
down). Figure 13(b) Distribution of azimuth angle (left-right,
positive indicating a camera is to the right looking left) dis-
tribution. Figure 13(c) Distribution of camera distance to a
human instance. Figure 13(d) Visualization of potential cam-
era angles. Computed by sampling camera location relative
to human instance every 100 human instances and visualiz-
ing the corresponding unit vector.

Feature Pyramid Network (FPN) [63] backbones. Additionally, these
models were fine-tuned using the starting weights and framework
of the Detectron2 ImageNet Keypoint R-CNN R50-FPN variant [41].

We create each model in the same way: fine-tuning with the
relevant dataset on the backbone described previously. We opted
for a simple training approach, setting the initial learning rate to
0.000025 for 20 epochs, and then lowering the learning rate by a
factor of 10 for an additional 10 epochs. For the first 1000 iterations
we also conduct a linear warm-up of the learning rate to its starting
value, slowly increasing the learning rate to its starting value. The
momentum was set to 0.9 and the weight decay was set to 0.0001.
All training runs were completed using a 4.2GHz 16-core/32-thread
AMD Ryzen Threadripper PRO 3955WX CPU, 2 NVIDIA RTX A5500
24GB VRAM, and 256 GB 3200MHz DDR4 memory with a mini-
batch size of 13 images per GPU, where each image was normalized
using the mean pixel value and standard deviation of the ImageNet
base model. For each model, we checkpointed the model weights
during every epoch and selected the epoch with the best-performing
keypoint AP to report in evaluation. This evaluation scheme was
consistent across baseline datasets and our synthetic datasets.

We note that WheelPose fine-tuned models and individual human
evaluators may not agree with each other on where a keypoint
is due to the innate difference between a modeled person and a
real person. Changes in the way WheelPose defines keypoints can
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Table 2: Ablation trials with configurations of each dataset and results in terms of the mean Average Precision (mAP) in the

bounding box (BB) and keypoint (KP) detection tasks.

Dataset Human Model Background Animation BB mAP KP mAP
WheelPose-base PSP default PSP default HumanML3D 68.68 65.18
WheelPose-SH SyntheticHumans PSP default HumanML3D 68.53 68.04
WheelPose-t2m PSP default PSP default Text2Motion 68.95 64.83
WheelPose-t2mR10 PSP default PSP default Text2Motion random 10% removed  68.97 65.19
WheelPose-t2mHE10 PSP default PSP default Text2Motion HE 10% removed 69.36 65.53
WheelPose-SB PSP default SynthHomes ~HumanML3D 69.75 66.60
WheelPose-RB PSP default BG-20K HumanML3D 64.44 63.89
WheelPose-Gen SyntheticHumans SynthHomes Text2Motion 69.71 67.53
WheelPose-Opt SyntheticHumans SynthHomes Text2Motion HE 10% removed 69.58 67.96
ImageNet (baseline) N.A. N.A. N.A. 35.19 63.11
PSP (baseline) PSP Default PSP Default PSP Default Able-Bodied 31.03 53.26

alter where a keypoint is predicted and the metrics computed in
the coming sections as seen in Appendix A.5. We attempted to
minimize these differences as much as possible through realistic
keypoint definitions in Unity.

4.3.3 Ablation Testing Strategy. We address (RQ2.1) through abla-
tion testing4 on a set of selected domain randomization parameters,
including animations, backgrounds, and human models, to better
understand the performance impacts of select data generation pa-
rameters.

Configuration. Regarding the human model, we analyze the effects
on the model performance of using: 1) PSP default human models
(PSP Default), and 2) SyntheticHuman human models (SyntheticHu-
mans). As to the background, we compare between 1) PSP default
texture backgrounds (PSP Default), 2) SynthHomes background
images (SynthHomes), and 3) BG-20K real background images (BG-
20K). Finally, regarding the motion sequence, we compare between
1) HumanML3D animations (HumanML3D), 2) Text2Motion an-
imations (Text2Motion), 3) Text2Motion with 10% of animations
randomly removed (Text2Motion random 10% removed), and 4)
Text2Motion animations with the bottom 10% of animations in total
ease and frequency from human evaluations (HE) (Text2Motion
HE 10% removed). Table 2 shows this list of datasets and their
configurations.

We use combinations of these parameters to assemble a set of
datasets of 70,000 images each. Each dataset consisted of ~ 65, 000
images with at least one human instance and was used to fine-tune
the base ImageNet model using the strategy listed in Section 4.3.2.
We also include the original PSP dataset with ~ 65, 000 images with
at least one human instance generated from the provided Unity
environment to test the efficacy of fine-tuning with synthetic able-
bodied user data [28]. For these tests, all models and our baseline
tests, ImageNet and PSP, were tested on our real wheelchair data
testing set using the industry standard metric for detection and
estimation accuracy, COCO mean Average Precision [64].
Results. Results in terms of bounding box (BB) and keypoint (KP)
mean APs (mAP) across ablation trials are shown in Table 2.

4 Ablation testing involves the removal of certain components to understand the con-
tribution of the component to the overall performance of an Al system

Regarding person detection (BB) performance, all datasets demon-
strated significant performance boosts of varying degrees when
compared to ImageNet and PSP. Notably, our best-performing abla-
tion test led to a 98.21% improvement in BB mAP (WheelPose-SB)
and a 7.81% improvement in keypoint mAP (WheelPose-SH) over
the best baseline dataset (ImageNet). This indicates the efficacy
of our synthetic data and the large headroom for improvement in
detecting poses of wheelchair users with industry-standard deep
learning models.

Poor performance from BG-20K may be explained by the detail
of background images. PSP default and SynthHomes data tend to
feature a set of simple or smooth textures while real-world images
are often more detailed and consist of more texture. These results
may signal a preference for other background characteristics over
pure realism.

When examining keypoint performance, the most significant
improvement was the inclusion of Unity SyntheticHumans models.
This makes intuitive sense, as the diverse and more representative
human models more closely match up with the humans found in
the real world rather than the generalized Unity humanoid models.
The variations between models also help combat overfitting issues
by introducing many different definitions of what is a "human" to
the model.

Finally, we examine the performance tradeoffs in our different
animation sets. We found motion generation outputs with random
filtering (WheelPose-t2mR10) performed comparably to motion cap-
ture data (WheelPose), indicating similar motion quality between the
two data sources. We also found that randomly filtered Text2Motion
animations (WheelPose-t2mR10) performed better than the full mo-
tion set (WheelPose-t2m). This may imply that the number of anima-
tions and poses is not directly correlated with model performance.
It is important to note these results may change depending on what
animations have been filtered. This idea is further shown in the HE
model (WheelPose-t2mHE10), which showed improvement in both
BB and KP mAP over the randomly removed 10% model. We see
that the removal of specific animations that are not perceived as
"realistic” can improve the model performance of generated data.
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Table 3: Bounding box AP performance comparison between base models and WheelPose-Opt. We list the mean of our seeded

testing + the maximum absolute deviation from the mean.

Dataset BBmAP BB APl°U=50 BB AploU-75 BB Apsmall BB aApmedium  Bp Aplarge
WheelPose-Opt 69.46 +0.22 90.77 £0.20  82.75+0.61  3.24+0.76  59.82 + 0.85 69.91 + 0.21
ImageNet (baseline) 35.19 71.49 28.50 0.00 3.15 36.12
PSP (baseline) 31.03 63.64 25.08 0.00 6.27 32.35

Table 4: Keypoint AP performance comparison between baseline and WheelPose-Opt. We list the mean of our seeded testing +

the maximum absolute deviation from the mean. We do not include AP™#!! since the human is too small to accurately assign
keypoints.

Dataset KPmAP  KP APOKS=50  Kp ApOKS-75 Kp ppmedium  Kp pplarge

WheelPose-Opt 67.93 £0.02 87.61+0.19 74.48 + 0.25 35.48 £0.40 68.99 £ 0.06

ImageNet (baseline) 63.11 77.43 67.20 6.22 64.96

PSP (baseline) 53.26 68.07 57.36 10.15 56.12

From our ablation testing results, we assembled two new datasets:
WheelPose-Gen, a dataset created from fully generative parameters
using SyntheticHuman models, SynthHomes backgrounds, and all
100 Text2Motion animations, and WheelPose-Opt, a dataset created
from the best performing parameters from ablation testing which
include SyntheticHuman models, SynthHomes backgrounds, and
Text2Motion HE 10% removed animations. Both datasets performed
comparably to the best performing ablation test in BB and KP mAP
(WheelPose-SH) with WheelPose-Opt. We note that WheelPose-Opt
outperforms WheelPose-Gen in KP mAP which follows our find-
ings in the initial ablation test. Our findings indicate that different
combinations of domain randomization parameters can produce
better Al models than the best perform parameters individually.

4.3.4 WheelPose-Opt Model Performance Deep Dive. We further
evaluate (RQ2.2) by conducting an in-depth quantitative and qual-
itative analysis of the changes in performance in Detectron2 when
fine-tuned with WheelPose-Opt, the best performing dataset from
ablation testing using synthetic data and simple human evaluations.
Configuration. We trained and evaluated the results for Wheel-
Pose-Opt with the same strategy described in Section 4.3.2 three
separate times using different model seeds (42, 4242, 424242). We
then computed the mean and maximum absolute deviation of a
set of evaluation metrics, including BB AP, KP AP, and individual
keypoint metrics, across the three trials. We compute the same
metrics on ImageNet and PSP for use as our baseline.

Results. We first quantify our overall bounding box and keypoint
performance with AP and its related breakdowns to build an overar-
ching view of our dataset’s performance across different scenarios.
AP at different IoU and OKS® thresholds measure the prediction
accuracy at varying degrees of recall (Higher indicates a stricter
ground truth definition). Additionally, the overall AP score is split
into small, medium, and large based on the detection segment
area to quantify the performance at different camera distances and

5ToU and OKS perform the same fundamental purpose for bounding boxes and key-
points respectively

human instance sizes. More information is found in the COCO
documentation [64].

Table 3 lists the BB AP performance for WheelPose-Opt and
the baselines. Our dataset displays over a 98% improvement over
both baseline scores in all subcategories of AP. Furthermore, we
notice a major drop in performance in the baseline models as the
IoU threshold becomes stricter. In contrast, our WheelPose models
maintain a high level of accuracy across a much wider range of
IoU thresholds. These results indicate WheelPose-Opt can not only
identify a wheelchair user but is capable of drawing an accurate
bounding box around the entire human instance compared to the
baseline models which are only capable of low-fidelity wheelchair
user detections.

As shown in Table 4, pose estimation improved by up to 7.64%
in KP mAP in WheelPose-Opt when compared to ImageNet and up
to 27.54% when compared to PSP. Furthermore, we see a similar or
greater magnitude of improvement across all AP metrics, indicating
the use of WheelPose-Opt improves pose estimation in all scenarios.
We note drastic improvements in AP on medium-sized human
instances, where ImageNet had noticeably poor performance (6.22).
Our system, thus, not only improves but even enables existing
models to estimate the postures of wheelchair chairs at further
distances.

Finally, we compute a set of per-keypoint metrics shown in Ta-
ble 5 to analyze the differences in specific keypoint predictions
between WheelPose-Opt and the baseline. We only showcase per-
cent change with respect to ImageNet as the PSP fine-tuned model
performs drastically worse in nearly all BB and KP metrics. Upon
examining the percentage of detected joint (PDJ) [83] at a 5% thresh-
old, a measure of a model’s ability to identify a joint, we notice a
76.14% improvement in ankle detection, attributed to more infor-
mation on foot placement in wheelchairs, and a 18.96% decrease in
detected hips, attributed to the wheelchair obstructing most of the
lower torso and hip area. We then compute the per joint position
error (PJPE), a simple accuracy metric measuring the Euclidean
distance error in detected joints, and found that as long as a joint is
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Table 5: Keypoint performance breakdown of our primary datasets. We list the mean of our seeded testing + the maximum
absolute deviation from the mean. Within the parentheses on the right is the percent difference from the base model, ImageNet.
Percentage of Detected Joints (PDJ) @ 5 describes the percentage of correctly predicted joints within a 5% bounding box diagonal
radius [83]. Per Joint Position Error (PJPE) describes the mean Euclidean distance for each keypoint from the ground truth
[115]. Object Keypoint Similarity Score (OKS) as described by COCO [64] and used in Chen et al. [23] is the mean precision per
keypoint evaluated at both standard loose and strict similarity thresholds of 0.5 and 0.75 respectively. Superiority directions

are noted as + and - next to each metric.

OKS50 (+) OKS75 (+)

Keypoint PDJ@5 (+) PJPE (-)

nose 0.91+£0.02(~2.15%)  8.73 + 4.06(—77.38%)
eyes 0.99 + 0.00(+5.70%)  6.30 + 0.64(—77.6%)
ears 0.92 + 0.01(+5.56%)  10.90  0.03(—61.60%)
shoulders  0.92 + 0.02(+6.74%)  10.98 + 0.26(—63.89%)
elbows 0.86 + 0.01(+2.78%)  14.54 + 0.23(—69.38%)
wrists 0.85+0.01(~0.19%)  16.22 + 1.65(=76.22%)

22.96 £ 0.61(—51.24%)

0.90 + 0.02(—3.23%)
0.96 + 0.01(+3.76%)
0.93 + 0.00(+5.90%)
1.00 £ 0.01(+4.74%)
0.97 + 0.00(+5.80%)
0.92 + 0.02(+6.13%)
0.97 + 0.00(—2.02%)

0.89 + 0.03(—1.83%)
0.95 + 0.01(+4.19%)
0.83 + 0.01(+0.81%)
0.97 + 0.01(+6.38%)
0.92 % 0.00(+6.55%)
0.88 + 0.02(+1.73%)
0.89 + 0.01(—6.63%)

hips 0.65 + 0.01(—18.96%)
knees 0.89 + 0.02(+6.63%)
ankles 0.78 £ 0.01(+76.14%)

14.99 + 0.97(—78.85%)
18.16 + 0.95(—69.04%)

0.97 + 0.01(+5.25%)
0.94 + 0.00(+87.67%)

0.94 + 0.01(+7.01%)
0.90 + 0.01(+91.49%)

detected, WheelPose-Opt predicts keypoints over 51.24% (hips) more
accurately. Finally, we compute the meaned per-keypoint precision
values at OKS thresholds of 0.5 and 0.75 as another measure of in-
dividual keypoint prediction accuracy. We see slight improvements
across most joints. Similar to PD]J, we can see similar trends in the
ankles and hips, improving a significant amount or slightly worse
respectively.

4.3.5 Key Prediction Changes. We conduct a visual analysis of the
changes in predicted keypoints between ImageNet and WheelPose-
Opt to analyze the information transfer between our synthetic data
and the real world across different scenarios to identify specific
situations where we perform better or worse. We ignore the PSP
dataset as it demonstrated noticeably worse performance compared
to ImageNet in both bounding box and pose estimation (Tables 3
and 4). Examples of different trends were plotted with the predic-
tions from both WheelPose-Opt, in green, and ImageNet, in red,
overlaid on top.

Improvements in wheelchair user detection. As shown in the
BB AP improvements between ImageNet and WheelPose-Opt in
Table 3, we notice major improvements in wheelchair user detection.
Figure 14 shows some examples of these improvements in a variety
of different environments. Figure 14(a), 14(d), and 14(e) shows two
examples of proper wheelchair user detection through WheelPose-
Opt. Figure 14(b), and 14(c) shows two examples of wheelchair
users being detected in low visibility settings due to both extremely
bright and dark lighting conditions. Of particular note is Figure
14(d), where even the background poster of a wheelchair image has
been detected, which human annotators had missed. We also notice
that even if ImageNet had detected a wheelchair user, its bounding
box prediction still was not accurate. Figure 14(f) to14(j) shows
some examples of this, where ImageNet tends to cut off portions
of the wheelchair user’s full body while WheelPose-Opt captures a
more accurate and representative bounding box.

Similar performance in front-facing scenarios. In front-facing
scenarios, ImageNet and other pose estimation models often per-
form very well on wheelchair users. This is because, at this angle,

the user can simply be interpreted to be sitting, with all limbs in full
view of the camera. Thus in practice, the front-facing wheelchair
user is very similar to a front-facing able-bodied user that is sitting.
We find that fine-tuning with WheelPose-Opt performs comparably
with the base ImageNet models in front-facing scenarios. Thus,
our system maintains crucial information learned from the initial
training of ImageNet that has proven to work well on wheelchair
users already. Examples of this phenomenon are shown in Figure
15.

Improvements in keypoint estimation in wheelchair self-
occlusion scenarios. While existing pose estimation models may
work well when the wheelchair user is facing directly forward, they
often break down when the user is turned away and the wheelchair
begins obstructing the view of the full human body. We find that
the additional synthetic data from WheelPose-Opt helps Detectron2
discern between what is a part of the wheelchair and what is a part
of the user’s body for a more accurate prediction. Figure 16 illus-
trates a few examples of such poor performance in ImageNet and
improved predictions enabled through WheelPose-Opt. In situations
where the legs are fully occluded by the wheelchair like in Figure
16(a), and 16(d), our system generates more reasonable predictions
compared to those of ImageNet, which placed the legs onto the
wheels of the wheelchair or even the elbow. Figure 16(b) shows
an example of how WheelPose-Opt can improve the detection of
self occluded keypoints like the user’s left knee and ankle. Figure
16(b), and 16(c) shows examples of where ImageNet has mistakenly
classified parts of the wheelchair as a keypoint.

Overfitting on wheelchairs. Upon examining the predictions
made by ImageNet and ImageNet fine-tuned with WheelPose-Opt,
we notice that both systems perform poorly on users with no lower
limbs. As shown in Figure 17(a), and 17(b) While ImageNet tends
to classify the wheelchair as the missing legs, we notice that our
system instead "fills in the blanks" and predicts legs in reference to
the wheelchair where they might usually be for a wheelchair user.
We further notice that our system tends to have more false positives
in detecting what can be defined as a wheelchair. As seen in Figure
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Figure 14: Examples of wheelchair user detection improvements with WheelPose-Opt over ImageNet. Red represents ImageNet
predictions while green represents WheelPose-Opt predictions. Figure 14(a) to 14(e) all show wheelchair users in different
scenarios who were completely undetected by ImageNet but detected with WheelPose-Opt fine-tuning. Figure 14(f) to 14(j) all
show wheelchair users in different scenarios who were detected by ImageNet, but had poor bounding box predictions which
were improved in WheelPose-Opt fine-tuning.

(b) @

Figure 15: Examples of similar performance between WheelPose-Opt and ImageNet in front-facing wheelchair users. Red
represents ImageNet predictions while green represents WheelPose-Opt predictions. Figure 15(a) to 15(d) all depict examples
of front-facing wheelchair users in a variety of different settings. The WheelPose-Opt fine-tuned model and ImageNet both

performed similarly, generating relatively matching keypoint predictions.

17(c), objects that resemble a wheelchair, like a grocery cart, may
affect the keypoint estimation of a wheelchair user. In other cases
like the one shown in Figure 17(d), we see that our system can even
detect empty wheelchairs and fill them in with humans when there
are not any. While this shows great promise in the information
transfer between digitally modeled mobility assistive devices and
real-world data, we find these tendencies can obfuscate the real
postures of wheelchair users.

5 DISCUSSION AND FUTURE WORK

Generalizable knowledge and transferability to HCI research.
Data generation approaches have been widely adopted in projects
in HCI for problems involving thermal imaging [47], IMU [51, 80],

stroke gesture [56], and RF data [5, 17]. Given the popularity of
data generation in HCI, we believe our techniques could be easily
transferable to related and future works in accessibility, motion
generation, and pose estimation. Furthermore, the modularization
in our pipeline could improve transferability by facilitating seg-
mented changes - a flexible way for data synthesis to experiment
with different components. Finally, methods shown in our statis-
tical analysis and model performance evaluation could be highly
reusable in future work that adopts our technique. That being said,
our pipeline provides the baseline framework for futures efforts in
research that require different humanoid models, motion synthesis
techniques for upper body and lower body, environmental factors,
and VR toolchains.
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Figure 16: Examples of improvements in keypoint estimation in WheelPose-Opt over ImageNet in scenarios where the wheelchair
occludes part of the user’s body. Red represents ImageNet predictions while green represents WheelPose-Opt predictions. Figure
16(a) to 16(d) all display improvements from WheelPose-Opt on keypoint predictions, specifically in the lower body.

Figure 17: Examples of overfitting on wheelchairs from WheelPose-Opt. Red represents ImageNet predictions while green
represents WheelPose-Opt predictions. Figure 17(a) and 17(b) Examples of poor predictions on wheelchair users without lower
limbs. Figure 17(c) An example of overfitting onto any wheelchair resembling object, like a grocery cart. Figure 17(d) An
example of overfitting where even an empty wheelchair is detected to have a user.

Configurability to cater needs of developers and end users.
We believe the results shown in Table 2, Appendix A.1, and Ap-
pendix A.5 demonstrate a clear need for developers to have an
interactive tool to modify training data, where slight changes in the
data modeling can have major effects on Al performance. Currently,
there are few tools to do so, with many developers choosing to
leverage static motion datasets which may not perfectly fit their
needs. This has been one of the dominant reasons for the rise
of inequitable Al models. For this reason, WheelPose is a pipeline
specifically designed to enable a high degree of configurability. This
allows for the creation of personalized synthetic datasets that cater
to developers’ needs, thereby increasing the likelihood of catering
to the needs of end users. This would lead to more effective and
inclusive Al models, which can be tuned to the individual needs of
the user instead of a one-size-fits-all solution for better performance
in real-world applications.

Improvements on the realism of generated data. We hope
the use of Unity enables future research into this idea and enables
developers to build a synthetic data generator that extends beyond
our simple simulation environment using 3D modeled scenes and
rooms instead of flat background images. Recent achievements in
Neural Radiance Fields (NeRF) could be leveraged to synthesize
photorealistic background images that adapt in response to changes

in the virtual camera’s perspective. Future work in realistic 3D
environment modeling will enable research in surface semantics for
more realistic configurations — having wheelchair users positioned
at ground surfaces. Moreover, physics could be incorporated to
simulate the locomotion of wheelchair users which would enable
the modeling of more realistic motions and collisions with other
models compared to our simple animations.

Efficacy of human evaluation. We found that motions from
motion generation models and motion capture were largely per-
ceived similarly by participants in the human evaluation (Sec-
tion 4.1). We further found that these two types of motions after
being filtered for human-perceived realism performed comparably
in model performance evaluation (Table 2). However, whether due
to current generative Al performance or the lack of training data
for disability-related movement, our human evaluations indicate
that generative Al models are still not able to represent users with
disabilities accurately without external human feedback. This is
shown in the improved performance with the addition of human
evaluations (Table 2). Due to this, we believe that human evalua-
tors are still vital to ensure that generated data is representative.
We recognize that our method for assessing motions, although
not exhaustive or entirely free of bias, contributes as an initial
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stride towards creating datasets that are more inclusive. Future re-
search should extend upon this work to integrate a more involved
human-centered system which will, instead, allow evaluators to
meaningfully guide the generation of data, including motions, sim-
ulation scenarios, and user modeling, through iterative feedback
(e.g., guided prompting) to create a more representative dataset.
We also found little literature on motion synthesis for people with
disabilities and recognized this vacuum as both a challenge and an
opportunity for generative AL

Comprehensive model performance evaluation. Our model
testing did not involve a serious grid search for data generation
hyperparameters, model seeds, initializations, or model configura-
tions. We also used the same training strategy for all tested datasets.
We held all these values constant to focus on the quality and impact
of the synthetic dataset on model performance. Even with this naive
approach to training, WheelPose still yielded promising results in
the improvement of pose estimation models through synthetic data
on wheelchair users. We found noticeable improvements in both
person detection and pose estimation problems. This indicates that
the specific synthetic modeling of users in wheelchairs in Wheel-
Pose can make existing computer vision models more equitable by
improving performance on wheelchairs. We believe our findings
pave the way for future works in synthetic data on humans with
other mobility-assistive technologies to improve pose estimation
equitability.

Diverse participant groups. A key limitation in this work is
that we only analyze the digitalized representation of users with all
four limbs and feet fixed on the foot rest, which does not express the
full range of wheelchair users with different bodies such as those
with amputations, dwarfism, spinal deformities, and other condi-
tions. Thus the findings may not be reflective of the wheelchair
population at large. We hope our data generation pipeline provides
a framework and will enable future developers to leverage 3D mod-
eling and Unity tools to create a more diverse body of wheelchair
user models. For instance, developers can easily add new bones to
existing models to more realistically represent spinal deformities.
We hope that these tools will also enable future works analyzing
different disabilities and mobility assistive devices which were not
addressed in our current research.

Improve inclusiveness of Al for more recognition modali-
ties. Furthermore, WheelPose enables more work beyond 2D bound-
ing boxes and pose estimation. Annotations on depth, surface nor-
mals, object segmentation, occlusion, 3D bounding boxes, and 3D
keypoints are fully implemented in our current data synthesis
pipeline but still unexplored. These annotations can be even more
difficult and costly to collect compared to RGB images and 2D
pose annotations, often requiring the use of specialized equipment
and data collection processes. Synthetic data has no such problem,
where any desired annotation and labeling are all equally accessi-
ble to collect. Thus, we believe that WheelPose can be adapted to
potentially address problems in wheelchair pedestrian detection
with object segmentation and occlusion annotations [26], 3D pose
estimation using 3D bounding box and pose annotations, and robot-
ics detection of people and mobility aids through depth data [102]
among other accessibility-related problems cheaply and efficiently.

Pitfalls of exclusion in data generation vs. data collection.
WheelPose is a pipeline for both AI developers and wheelchair
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users to circumvent existing inaccessible data collection methods
and meaningfully improve the training process of Al models by
generating data for wheelchair users. However, we are cautious
that by circumventing existing inaccessible data collection methods
with our tool, we could run the potential risk of furthering exclu-
sion, which echoes long-standing debates within the accessibility
community. Our paper is based on the assumption that making Al
equitable requires pursuing multiple approaches together — effec-
tive approaches to improving representations of training data from
people with disabilities leveraging both data collection and data
generation. We advocate that new tools for data generation and
the existing data collection methods are not mutually exclusive.
Their synergy could lead to a more practical approach to resolving
accessibility challenges than what could be offered by either of the
two approaches alone. We believe that the following characteristics
are vital in future works to avoid pitfalls of exclusion: 1) represen-
tative and diverse participant groups, for which we have conducted
studies around spinal injuries of various levels and recommend
future work to consider participants from wider backgrounds; 2)
realistic generated data, for which we invented several data gen-
eration techniques optimizing data realism; and 3) effective tools
for human evaluation, for which we adopted embodiment in our
human evaluation interface allowing participants to seamlessly
transfer the presented motion sequences to their own bodies for a
more intuitive evaluation.

6 CONCLUSION

We introduce WheelPose, an extension of the highly-parameterized
synthetic data generator PeopleSansPeople, for wheelchair users
with the possibility of use in other mobility-assistive technolo-
gies to improve the performance of common pose estimation algo-
rithms in the traditionally underrepresented group of wheelchair
users. WheelPose includes a full end-to-end pipeline to convert ex-
isting motion capture and motion generation model outputs into
wheelchair user animations for use in a complete Unity Simula-
tion scene (RQ1.1) containing a range of 3D human models from
Unity SyntheticHumans in wheelchairs, backgrounds, occluders,
and unique lighting conditions. We provide full control over all re-
lated parameters, including keypoint labeling schema, for computer
vision tasks (RQ1.2). We tested our pipeline using two different
motion sequence sources: motion capture data from HumanML3D
and motion generation outputs from Text2Motion. These motions
underwent a set of human evaluations. We then analyzed the im-
pacts of different domain randomization parameters and motions
on model performance, finding an "optimal" combination of param-
eters and comparable performance between our motion sources
(RQ2.1). Finally, we tested the model performance of the dataset
generated through WheelPose with no real-world data using the
optimal parameters found previously on a dataset of real wheelchair
users to find noticeable improvements in model performance when
compared against existing pose estimation models (RQ2.2). We ex-
pect WheelPose to enable a new range of research in using synthetic
data to model users with disabilities in improving the equity of AL
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A APPENDIX
A.1 Animation Clip Fix

To ensure the human model’s do not overlap with the wheelchair
footplates, a 35 degree rotation of the hips up toward the sky is
applied. This hip rotation decreases the amount of clipping between
the legs and the wheelchair. Clipping is a common occurrence in 3D
modeling where when objects are within each other, only the object
closer to the camera will be rendered and obscure the overlapped
object. Examples of this extra clipping are shown in Figure 1.

A.2 Posture to AnimationClip Conversion

We convert the postures resulting from previous sections into hu-
man images using human models in Unity which take Animation-
Clips as input for pose configurations. To convert pose frames into
AnimationClips, all motion sequences from each set, represented by
a series of joint rotations, are individually imported into Blender.
Each frame’s joint rotations are applied to the corresponding joint
in a Unity Perception human model Blender template and exported
as an FBX file. Upon importing an FBX file into Unity, Unity will
automatically convert all baked animations into Unity-readable
AnimationClip files which can be used in Unity Perception. All
AnimationClips are then set to read as Unity Humanoid animations
for use in data synthesis.

A.3 WheelPose Randomizers

Unity Perception enables the use of the "randomizer" paradigm to
enable users to configure the domain randomization of individual
parameters [15]. WheelPose uses multiple Unity Perception default
randomizers, PSP custom randomizers [28], and a collection of
custom WheelPose randomizers. It is important to note that many
of PSP’s custom randomizers have made it into the release version
of Unity Perception (1.0.0). We have chosen to maintain the original
randomizers used for a direct comparison between data synthesized
between PSP and WheelPose. Like in PSP, our randomizers are
regarded as further data augmentation techniques which limits the
need for data augmentations during training itself. All randomizers
sampled values from a uniform distribution. Table 1 outlines the
statistical distributions for our randomizer parameters. A brief
description of each randomizer used in WheelPose is described
below.

BackgroundObjectPlacementRandomizer. Randomly spawns
background and occluder objects within a user-defined 3D volume.
Separation distance can be set to dictate the proximity of objects
from each other. Poisson-Disk sampling [16] is used to randomly
place objects sourced from a set of primitive 3D game objects (cubes,
cylinders, spheres, etc.) from Unity Perception in a given area.
BackgroundOccluderScaleRandomizer. Randomizes the scale
of the background and occluder objects.

RotationRandomizer. Randomizes the 3D rotation of background
and occluder objects.

ForegroundObjectPlacementRandomizer. Similar to BackgroundOb-

JjectPlacementRandomizer. Randomly spawns foreground objects
selected from the default set of PSP models affixed in wheelchair
models.
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ForegroundScaleRandomizer. Similar to BackgroundOccluder-
ScaleRandomizer. Randomizes the scale of foreground objects.
TextureRandomizer. Randomizes the texture of predefined ob-
jects provided as a JPEG or PNG. We used the set of example textures
from Unity Perception which are applied to the background and
occluder objects as well as to the background wall when no specific
background is set.

HueOffsetRandomizer. Randomizes the hue offset applied to
textures on the object. Applied to background and occluder objects
as well as to the background wall when no specific background is
set.

SpriteRandomizer. Randomizes the background wall. Used as an
alternative to the TextureRandomizer when images should not be
stretched to fill a canvas.

HumanGenerationRandomizer. Randomizes the age, sex, ethnic-
ity, height, weight, and clothing of spawned human assets. Humans
are spawned in batches called pools which are periodically regen-
erated through the simulation process. All humans are spawned
within a predefined base which contains the wheelchair model used.
All textures and models used are sourced directly from SyntheticHu-
mans.

NonTagAnimationRandomizer. Randomizes the pose applied
to a character. The pose is a randomly selected frame from a ran-
domly selected AnimationClip taken from a universal pool of Ani-
mationClips. Provides a custom alternative to the Unity Perception
AnimationRandomizer for randomizing animations taken from a
single pool.

TransformPlacementRandomizer. Randomizes the position, ro-
tation, and size of generated SyntheticHumans. Rotations around
the X,Z-axis are limited to better represent real world data where
users are rarely seen in such orientations.
SunAngleRandomizer. Randomizes a directional light’s intensity,
elevation, and orientation to mimic the lighting effects of the Sun.
LightRandomizer. Randomizes a light’s intensity and color (RGBA).
Also enables the randomization of a light’s on/off state.
LightPositionRotationRandomizer. Randomizes a light’s global
position and rotation in the scene.

CameraRandomizer. Randomizes the extrinsic parameters of a
camera including its global position and rotation. Enables the ran-
domization of intrinsic camera parameters including field of view
and focal length to better mimic a physical camera. Adds camera
bloom and lens blur around objects that are out of focus to capture
more diverse perspectives of the scene.
PostProcessVolumeRandomizer. Randomizes select post pro-
cessing effects including vignette, exposure, white balance, depth
of field, and color adjustments.

A.4 Testing Dataset Action Classes

A set of real-world wheelchair data was collected from YouTube. A
predefined set of 16 action classes was defined before being used as
keyword searches to identify relevant videos. Action classes were
selected based on a mix of common actions and unique wheelchair
movements. A total of 2, 464 images were collected. More informa-
tion on action classes is found in table 2.
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Appendix figure 1: Examples of generated data with and without increased lower body clipping. Notice the overlap between the
ankles and the footplate in the motion sequences with clipping creates models where it looks like the human model has fused

into the wheelchair.

A.5 Impacts of Keypoint Location Definitions

Unity Perception enables users to redefine different keypoint def-
initions for image annotations. Unity Perception provides a de-
fault COCO 17-keypoint annotation schema which places each
keypoint directly on the joint between two bones. However, in
human-annotated datasets, many evaluators place the hip much
higher than the actual joint between the hips and the femur. We
test Unity’s default keypoint schema with lower hips against our

own custom COCO 17-keypoint schema which raises the hip key-
point up the torso by ~ 9cm. All data is generated in the exact
same way with the only difference of how the hip keypoints are
defined. Examples of how the annotation schema affects predictions
are displayed in Figure 2. We see that changes in the definition of
keypoints in synthetic data can drastically change the position of
the changed keypoint in predictions. We believe this concept can
be used to adapt and tune existing pose estimation models with
different keypoint definitions through the use of only synthetic
data.
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Appendix table 1: Domain randomization parameters of WheelPose

Category

Randomizer

Parameter

Distribution

Background/Occluder Objects

BackgroundObjectPlacementRandomizer

object placement

Cartesian[Uniform(-7.5, 7.5), Uniform(-7.5, 7.5), Uniform(-7.5, 7.5)]

separation distance

Cartesian[Constant(2.5), Constant(2.5), Constant(2.5)]

BackgroundOccluderScaleRandomizer

object scale range

Cartesian[Uniform(1, 12), Uniform(1, 12), Uniform(1, 12)]

RotationRandomizer object rotation Euler[Uniform(@, 360), Uniform(@, 360), Uniform(@, 360)]
TextureRandomizer textures A set of of texture assets

SpriteRandomizer sprites A set of sprite assets

HueOffsetRandomizer hue offset Uniform(-180, 180)

Human Model

HumanGenerationRandomizer

humans per iteration

Uniform(5, 12)

human pool size

Constant(50)

pool refresh interval

Constant (400)

age Uniform(10, 100)

height Uniform(@.1, 1)

weight Uniform(e, 1)

sex male, female

ethnicity Caucasian, Asian, Latin American, African, Middle Eastern

TransformPlacementRandomizer

synthetic human placement

Cartesian[Uniform(-7.5, 7.5), Uniform(-7.5, 7.5), Uniform(-4, 1)]

synthetic human rotation

Euler[Uniform(@, 20), Uniform(@, 360), Uniform(@, 20)]

synthetic human size range

Cartesian[Uniform(@.5, 3), Uniform(@.5, 3), Uniform(@.5, 3)]

ForegroundObjectPlacementRandomizer

predefined model placement

Cartesian[Uniform(-7.5, 7.5), Uniform(-7.5, 7.5), Uniform(-9, 6)]

predefined model separation distance

Cartesian[Constant(3), Constant(3), Constant(3)]

ForegroundScaleRandomizer

predefined model scale range

Cartesian[Uniform(@.5, 3), Uniform(@.5, 3), Uniform(@.5, 3)]

ForegroundRotationRandomizer

predefined model rotation

Euler[Uniform(@, 20), Uniform(@, 360), Uniform(@, 20)]

NonTagAnimationRandomizer animations A set of AnimationClips of arbitrary length
hour Uniform(@, 24)
SunAngleRandomizer day of the year Uniform(@, 365)
latitude Uniform(-90, 90)
. intensity Uniform(5000, 50000)
Lights . .
LightRandomizer color RGBA[Uniform(@, 1), Uniform(@, 1), Uniform(@, 1), Constant( 1)]
enabled P(enabled) = 0.8, P(disabled) = 0.2
. " . X position offset from initial position Cartesian[Uniform(-3.65, 3.65), Uniform(-3. 65, 3.65), Uniform(-3.65, 3.65)]
LightPositionRotationRandomizer
rotation offset from initial rotation Euler[Uniform(-5@, 50), Uniform(-50, 50), Uniform(-50, 50)]
field of view Uniform(5, 50)
focal length Uniform(1, 23)
Camera CameraRandomizer

position offset from initial position

Cartesian[Uniform(-5, 5), Uniform(-5, 5), Uniform(-5, 5)]

rotation offset from initial rotation

Euler(Uniform(-5, 5), Uniform(-5, 5), Uniform(-5, 5)]

Post Processing

PostProcessVolumeRandomizer

vignette intensity

Uniform(5, 50)

fixed exposure

Uniform(5, 10)

white balance temperature

Uniform(-20, 20)

depth of field focus distance

Uniform(.1, 4)

color adjustments: contrast

Uniform(-30, 30)

color adjustments: saturation

Uniform(-30, 30)
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Appendix table 2: Distribution of activity classes in the testing dataset.

Activity Class Percentage of Dataset

talking 21.659%
wheelchair skills  14.692%
daily routine 13.460%
dance 10.664%
basketball 8.863%
tennis 5.829%
extreme sports 5.640%
general sports 4.645%
household chores 3.318%
shopping 2.180%
cooking 2.085%
travel 1.801%
photoshoot 1.611%
rugby 1.422%
pickleball 1.185%
stretches 0.948%

Appendix figure 2: Examples of the different prediction outputs between a lower hip definition and a higher hip definition in
synthetic data. Green represents the lower hip definition and red represents the higher hip definition. Figure 2(a) to 2(d) all
show examples of where other keypoint predictions are relatively similar with the exception of the hips where the lower hip
annotations are placed lower on the body compared to the higher hip annotation. Each image depicts the wheelchair user in a
different angle, setting, and action.



