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ABSTRACT 
Smart and responsive environments rely on the ability to de-
tect physical events, such as appliance use and human activ-
ities. Currently, to sense these types of events, one must ei-
ther upgrade to “smart” appliances, or attach aftermarket 
sensors to existing objects. These approaches can be expen-
sive, intrusive and inflexible. In this work, we present Vi-
brosight, a new approach to sense activities across entire 
rooms using long-range laser vibrometry. Unlike a micro-
phone, our approach can sense physical vibrations at one spe-
cific point, making it robust to interference from other activ-
ities and noisy environments. This property enables detection 
of simultaneous activities, which has proven challenging in 
prior work. Through a series of evaluations, we show that 
Vibrosight can offer high accuracies at long range, allowing 
our sensor to be placed in an inconspicuous location. We also 
explore a range of additional uses, including data transmis-
sion, sensing user input and modes of appliance operation, 
and detecting human movement and activities on work sur-
faces. 

Author Keywords 
Context-Aware Sensing; Internet-of-Things; Appliance 
Monitoring; Activity Detection; Laser Vibrometry.  

INTRODUCTION 
Robust activity detection is the foundation for context-aware 
computing, where systems can not only take commands from 
users, but also proactively adapt or respond to users’ tasks [2, 
60]. Today, the closest we have come to achieving this vision 
commercially is with “smart” appliances (e.g., refrigerators, 
coffee machines). Another approach that has seen some com-
mercial success are aftermarket “sensor tags” that can be af-
fixed to existing objects to enable some level of smartness 
(e.g., Notion [37], Motion Cookies [49]). Though direct 
physical contact yields high signal fidelity, it also limits sen-
sor placement (possibly forcing the use of batteries) and typ-
ically means that many sensors must be deployed to monitor 
an entire room. These sensors can be costly per unit (often 
tens of dollars), potentially aesthetically obtrusive, need to 
be water and impact resistant, and require wireless commu-
nication infrastructure. We are also beginning to see camera-
driven products with activity recognition capabilities (e.g., 
Matrix Sensor [34], Lighthouse [31]), which have the signif-
icant benefit of being able to monitor a wide area without 
direct instrumentation, though simultaneously suffer from 
privacy implications, especially in the home. 

In this work, we leverage vibrations, which have been shown 
to be a rich signal source for detecting a wide array of events 
(see e.g., [28]). Indeed, almost all physical activities generate 
vibration as a byproduct, whether it be chopping vegetables, 
writing on a whiteboard, typing on a laptop, running on a 
treadmill, or even sitting and reading a book. Likewise, many 
devices and appliances produce characteristic vibrations 
(e.g., faucets, kitchen appliances, HVAC, power tools, and 
even electronics if they contain fans). In response, there has 
been significant prior work leveraging vibrations for activity 
detection, including sensors coupled to floors and walls [4, 
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Figure 1. Users can tag objects (A) they wish to reveal to Vibrosight. The system (B, lower right) periodically 

scans the room to find retroreflective tags (highlighted with yellow circles), which can be used to sense vibration 
at long distance. The resulting spectrograms (C) can be used to infer appliance use and human activities. 



28, 29, 40, 48], as well as plumbing, gas and HVAC infra-
structure [6, 9, 14, 17].  

In this paper, we describe our work on Vibrosight – a low-
cost, vibration sensing approach that works at long distances, 
affording flexibility in placement. Users affix small, inex-
pensive, passive stickers (Figure 1A) to objects they wish to 
reveal to our system – surfaces and objects without tags are 
invisible to Vibrosight. By using a steerable mirror, we can 
direct our sensing to any point with line of sight. We use this 
ability to intensively scan a scene for tags (Figure 1B), and 
then once found, rapidly cycle between tags to sense the vi-
brations of their host surfaces. We use this data to produce 
vibrational spectrograms for each object (Figure 1C), which 
we feed to a machine learning pipeline for recognition. In our 
evaluation, we investigated sensing accuracy across 24 ob-
jects in four locations. Our system can detect activation at 
98.4% accuracy, with a false positive rate of 0.7%. To un-
derscore Vibrosight’s robustness to interference, most of our 
study data were collected with multiple active appliances. 
Overall, we believe this work illuminates a new sensing ap-
proach with unique strengths.  
INSPIRATION 
We were initially inspired by light-based eavesdropping de-
vices invented by Léon Theremin in the 1950s [18]. These 
setups bounced light off of distant, large, reflective surfaces 
– most often windows – and measured the intensity of the 
reflected light. Vibrations, induced by e.g., voice, cause sur-
faces to oscillate, which in turn, slightly alters the light path. 
This manifests as an amplitude modulated signal that can be 
captured by a photosensor placed in the reflected light. To-
day, these devices use lasers as their light source and are 
called “laser microphones”.  

Unfortunately, traditional setups suffer from two significant 
drawbacks that preclude their immediate use for activity 
sensing. First, the method is compatible with very few mate-
rials and surfaces. Windows are traditionally used because 
they are reflective, large and somewhat elastic, and thus 
function in a similar manner to a microphone diaphragm; air-
borne sounds, such as speech, cause the glass to oscillate. 
However, by using a window as a proxy to capture sounds, 
individual vibrational signals cannot be separated. A second, 
even greater drawback is that laser microphones are at the 
mercy of an environment’s geometry. Unless the setup can 
be perfectly perpendicular to e.g., a window, the emitter and 
receiver must be placed apart in accordance with the reflec-
tive angle of incidence. This means sensing multiple surfaces 
almost certainly means having to deploy multiple sensing 
setups.  

We found that these limitations could be removed by using 
inexpensive, retroreflective stickers (Figure 1A). These re-
flect light back to its source, allowing us to combine a laser 
and photosensor into single, compact sensing unit (Figures 1 
and 8). Unlike co-opting a window as a diaphragm, our tags 
allow us to exclusively read the vibrations of a host surface. 
This spatial precision makes our technique robust to noisy 
environments and vibrational interference, and means we can 

support recognition of multiple simultaneous activities, 
which most prior systems do not demonstrate (e.g., [13, 15, 
53]). 

RELATED WORK 
Vibrosight intersects with three key literatures. First, we dis-
cuss prior work on human activity detection, focusing on sys-
tems that can detect activities from afar, as opposed to sensor 
tags or wearables. We then discuss prior work that used la-
sers for sensing and conclude with a review of non-contact 
vibrometry methods. 

Activity Detection 
Many approaches have been employed to detect activities. 
Most popular are camera-based, computer vision systems [27, 
31, 34, 44, 68], including depth cameras [54, 66] that ease 
the task of user segmentation. Researchers have also used 
thermal sensors, which capture black body radiation from the 
human body [24, 33]. For a more comprehensive review of 
this literature, please refer to [7, 25].  

There are also many electrical approaches for detecting ap-
pliance use. For example, ElectriSense [19] and Dose [8] 
sense electromagnetic interference (EMI) on powerlines to 
detect appliances. Wall++ [67] uses painted antennas to cap-
ture air-borne EMI signals to detect and localize appliances. 
Researchers have also attached RFID tags to objects of inter-
est to monitor their usage with remote readers [30, 50, 52]. 
Finally, it is possible to use radar to recognize objects [5, 63], 
which could enable context-aware applications.  

More relevant to Vibrosight are sensing methods that lever-
age vibrations to infer activities. The most straightforward 
approach is to tag objects with sensors that contain accel-
erometers [37, 49, 56]. To avoid direct instrumentation, re-
searchers have investigated infrastructure mediated ap-
proaches, such as attaching vibroacoustic sensors to e.g., gas 
lines [9] and water pipes [6, 14, 17]. Vibration sensing has 
also been attempted at building scale [3] for applications in-
cluding occupancy monitoring [40], tracking [48] and fall 
detection [4]. Finally, Synthetic Sensors [29] demonstrated 
hardware featuring many discrete sensors – including a high-
speed accelerometer for vibration sensing – that could detect 
a wide range of activities across an entire room from a single 
instrumented point.  

Lasers for Sensing 
Lasers have long been used in sensing systems, including la-
ser tachometers measuring rotary speed and laser velocime-
ters that measure the speed of surfaces and particles. It is also 
possible to measure distances with lasers (i.e., LIDAR), ei-
ther by measuring parallax or phase shift of returned laser 
light. Some depth cameras, such as the original Microsoft 
Kinect and Apple iPhone X TrueDepth camera, include a 
structured-light laser emitter. 

In the research domain, Iyer et al. [22] use retroreflective tags 
and a scanning laser to find phones in a scene and wirelessly 
charge them (and could be easily extended to work with our 
approach). Researchers have also used line lasers to track 
touch input, estimate finger angle on a touchscreen [55], and 



even construct a 3D model of a hand [26]. Reflected laser 
light produces a unique speckle pattern (one example shown 
in Figure 3), which researchers have also leveraged. For ex-
ample, SpecTrans [47] uses the signal to identify objects, 
SpeckleSense [65] and SpeckleEye [39] track the motion of 
distant objects, and Smith et al. [51] demonstrate hand ges-
ture recognition.  

Non-Contact Vibrometry 
Most relevant to our work are non-contact vibrometry tech-
niques, which include RF [57, 61, 62] and high-speed camera 
approaches [10, 11]. More common is laser vibrometry, 
which falls into two main categories. The first is laser Dop-
pler vibrometry, which uses the phase difference between re-
flected, Doppler-shifted light (due to movement of a surface) 
and an internal reference [23, 36]. There are also intensity-
based methods that use high-powered zoom lenses to inter-
rogate laser light falling onto a surface, and sense changes in 
the speckle pattern resulting from surface vibration [32, 58, 
64]. Vibrosight is also intensity-based, but requires no com-
plex optics due to our use of retroreflective tags. Commercial 
laser vibrometers – used for applications ranging from me-
chanical analysis to quality control – exclusively rely on la-
ser Doppler vibrometry [38, 42]. Expensive optics mean that 
even entry-level systems cost tens of thousands of dollars (vs. 
~$80 for our Vibrosight prototype). These commercial sys-
tems sometimes ship with retroreflective stickers to improve 
SNR.   

BACKGROUND EXPERIMENTS 
Although laser vibrometry has been well studied, no previ-
ous work has attempted to use it for activity detection in eve-
ryday settings. Therefore, prior to the development of our 
system, we first ran a series of background experiments to 
verify the principles of operation and investigate parameters 
that affect sensing quality.  

Experiment Apparatus 
To generate vibrations of known frequency in our tests, we 
used a wide-band transducer (driven by an audio amplifier) 
connected to a signal generator. To measure the photocur-
rent, we used a PIN photodiode [59] amplified by a standard 
transimpedance amplification circuit with a 16-2800 Hz 
bandpass filter. The photodiode was placed next to the laser 
diode, facing in the same direction. The amplified signal is 
sampled by an ADC at 5 kHz, which we render into a spec-
trogram. Of note, all spectrograms in this paper are rendered 
using a logarithmic color scale.  

We configured the transducer to output a linear 0 to 2 kHz 
swept-frequency signal with a peak amplitude of 0.12 G. For 
reference, a generic microwave we tested had peak vibra-
tional amplitude of 0.45 G. Figure 2, left, shows the vibration 
signal collected by an accelerometer (STMicroelectronics 
LIS3DH) affixed to the transducer. Figure 2, right, is data 
captured using a 3 mW red laser from 5 meters away using a 
mirror affixed to the transducer. Besides the main sweep, we 
also see higher-order harmonics (and their aliases) due to the 
mechanical properties of the transducer and the nature of the 
reflected laser speckle pattern, specifically the discrete 
speckles entering and leaving the photosensitive area results 
in speckle noise [45] (Figure 3). The spectrograms also re-
veal unwanted environmental noise caused by artificial light-
ing and electrical noise (Figure 2, right).  

Experiment 1 – Laser Wavelength 
Laser vibrometry requires a laser beam to illuminate a sur-
face of interest, which naturally leads to the first parameter 
to investigate: the wavelength of laser light. We tested three 
common wavelengths: 532 nm (green), 635 nm (red), and 
940 nm (infrared) to see if performance varied. As before, 
we used a 0-2 kHz swept-frequency signal with a mirror at-
tached to our transducer. We placed our laser-photodiode 
unit 1 m away; see Figure 4 for spectrograms.   

The three laser wavelengths had nearly identical perfor-
mance, though we did notice that the driver circuit of our 
green laser seemed to be more prone to harmonics of power-
line noise. In real-world use, an infrared laser might be pre-
ferred, as it is invisible to humans (and eye-safe at the watt-
age we use). However, for ease of debugging, we selected 
the red laser for all future experiments.  

 
Figure 2. Vibration spectrograms of a swept-frequency  

signal (0 to 2 kHz) over 20 seconds, measured by an accel-
erometer (left) and our laser vibrometry sensor (right). 

 

 
Figure 4. Vibration spectrograms of a swept-frequency signal  

(0-2 kHz) using lasers of different wavelengths. 

 
Figure 3. Example retroreflected speckle pattern as captured 
by a 22×14 mm CMOS sensor at 2 m. A small part of this pat-

tern would land onto the 2.7×2.7 mm photosensor used in  
Vibrosight (illustrated at scale with white square).  

 



Experiment 2 – Reflective Materials 
Our next test was to investigate the performance of different 
reflective materials. In addition to the previously used mir-
ror, we included (soda-lime) glass and three common retrore-
flective materials: retroreflective tape [1], retroreflective 
spray [46] and a (bicycle) corner reflector matrix [12]. We 
used the same setup and procedure as the previous test. Of 
note, glass uniquely permits the passage of some laser en-
ergy, reflecting approximately 30% (when normal to emitter), 
which indicates that sensing through glasses could be 
achieved if desired. 

The resulting spectrograms can be seen in Figure 4. The 
retroreflective spray returned little signal, while the corner 
reflector generated noise due to physical resonance on the 
transducer. The mirror, glass, and retroreflective tape all per-
formed well. As noted previously, retroreflective surfaces 
enable Vibrosight to sense objects at a wide range of angles, 
and so we adopted retroreflective tape as our tag material of 
choice.  

Experiment 3 – Tag Distance and Angle  
Users can tag objects in the environment at any angle and 
distance, and so we wished to quantify the performance of 
our selected retroreflective tape with these factors. For this 
test, we configured the transducer to output a constant 1 kHz 
vibration and measured the amplitude of the detected signal 
(at 1 kHz) with the noise floor subtracted. We tested dis-
tances from 1 to 8 meters (1 m interval) and angles from 0° 
to 60° (15° increments).  

As seen in Figure 6, the returned signal decreases as distance 
and angle increases. However, even at 8 meters and 60°, the 
returned signal is still detectable with our setup (0.04 Vpp). 
This range of sensing should be sufficient to cover typical 

indoor spaces. Longer distances and acuter angles could be 
enabled with higher-power lasers and superior analog 
frontends. 

Experiment 4 – Artificial and Natural Light 
In the previous tests, we found that the most significant 
source of noise comes from lighting in the environment. In 
this experiment, we investigated how light – both natural and 
artificial – affects our approach. We used the same setup as 
above, at 1 m, using a 0-2 kHz swept-frequency signal. We 
varied the lighting conditions: dark, daylight, incandescent 
and fluorescent light.  

We found very little difference between dark and daylight 
conditions, suggesting that natural light level has little effect 
(Figure 7). This is because our circuit’s bandpass filter re-
moves the DC bias of a constant light source. However, arti-
ficial light oscillates, which is visible in the captured signal. 
Additionally, fluorescent lights tend to emit wide-band elec-
trical noise.  

Experiment 5 – Speech  
During previous tests, we serendipitously noticed our setup 
was insensitive to voice. As a test, we affixed a tag to a large 
window, roughly 1×2 m in size, which would be an excellent 
surface for a conventional laser microphone to capture 
speech. However, we found that our setup could not detect 
speech at any volume.  

As a more formal test, we recruited four participants (two 
female) to read aloud a 51-word paragraph, 1 meter away 
from the window. Using the same setup as the previous ex-
periments, we recorded vibrations while participants spoke. 
We then played the recordings back to participants, who all 
reported that they could not hear their voice. Our own anal-
ysis suggested there is no discernable signal. As a further 
test, we affixed an accelerometer to the window, similar to 
our earlier transducer tests, and recorded vibration during 
speech. As with our laser vibrometer, we saw no signal, sug-
gesting the magnitude of vibrations induced by speech is 
very small (under the ~0.001 G noise floor of the accelerom-
eter), and many orders of magnitude lower than vibrations 
from e.g., motor-driven appliances. That said, it might be 
possible to recover voice with a more sensitive analog 
frontend. However, by limiting the signal gain in hardware, 
we obtain a beneficial privacy-preserving effect. 

IMPLEMENTATION 
To make our sensor compact and easy-to-deploy, we built a 
custom sensor board and pan-tilt mirror platform (Figure 8). 
In total, our prototype hardware cost roughly $80.  

 
Figure 7. Vibration spectrograms of a swept-frequency  

signal (0-2 kHz) under different lighting conditions. 

 
Figure 6. Signal amplitude at different retroreflective  

tag distances and angles.  
 

 
Figure 5. Vibration spectrograms of a swept-frequency  

signal (0-2 kHz) using different reflective materials. 



Sensor 
Our sensor (Figure 8) consists of two main elements. First is 
a 3 mW, class IIIA, red laser diode (Quarton VLM-635 [43]), 
which is rated as safe for brief, direct exposure to the naked 
eye [21]. In our scanning mirror design, the duty cycle at any 
one position is low, and as we discuss later, we can detect 
when the beam is interrupted and turn off the laser as an extra 
safety measure (similar to [22]). The second component is a 
2.7×2.7 mm square PIN photodiode [59] fitted with a 
635±18 nm bandpass optical filter. To further reduce the ef-
fect of ambient light and improve directionality, we house 
our photodiode in a 2 cm long, black plastic tube.  

Pan-Tilt Mirror Platform  
To sense multiple objects in an environment, we designed a 
mirror-control platform, built from two BYJ-48 stepper mo-
tors [35] and a 5×5 cm first surface mirror (Figure 8). This 
platform has a 120° (pan) by 60° (tilt) field of view with an 
angular resolution of 0.18°. We run our stepper motors at 
30°/sec. To remove gear backlash, our driver software seeks 
to a point 6° above and to the left of a point, before translat-
ing to the desired target.  

Driver/Sensor Board 
Our driver/sensor board (Figure 9) is built around an 
MK20DX256VLH7 microcontroller [16] powered by 
Teensy 3.2 firmware [41]. Eight digital pins are used to con-
trol the two stepper motors. The board also features a 16-
2800 Hz bandpass analog frontend with a programmable 
gain. The amplified signal is sampled by the built-in ADC on 
the microcontroller at 5 kHz. A second analog frontend (no 
bandpass) measures the absolute reflected light intensity. 
Data is sent to a laptop over USB for visualization and fur-
ther computation.  

Tags 
We used 3M 79961 Scotchlite Reflective Striping Tape [1] 
for our tags. To ensure Vibrosight can find tags, even at long 
distances, they cannot be smaller than the step size of our 
mirror-control platform. The formula to calculate the mini-
mum size of a tag given stepper motor angular resolution and 
sensor distance is: 

𝑇𝑎𝑔	𝑆𝑖𝑧𝑒 ≥ 2×sin(𝐴𝑛𝑔𝑢𝑙𝑎𝑟	𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛/2)×𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

For example, when sensing at 4 m with our prototype’s 0.18° 
angular step size, the minimum tag size would be 
1.3×1.3 cm. At longer sensing distances, larger tags must be 
used. We selected 5×5 cm as our standard tag size, which 

was sufficient for all of our tests and locations. At small-vol-
ume retail prices, these tags cost 30 cents each. 

Tag Search 
To find tags, Vibrosight raster scans its field of view from 
top to bottom while measuring the absolute reflected light 
intensity at each step. If the laser hits a tag, the intensity of 
reflected light significantly increases, manifesting as a peak 
in our scanned signal. When the raster scan is complete, we 
spatially cluster all peaks to extract the theta and phi of prob-
able tags. On our prototype hardware, this scanning process 
takes 20 minutes and is chiefly limited by the speed of our 
stepper motors. We envision this process being triggered by 
users when they tag a new object they wish to register with 
the systems. However, tag search could also occur opportun-
istically throughout a day, such that new objects are found 
within a few hours automatically.    

Tag Labeling 
Our search process finds tags in a scene, but cannot identify 
what objects they are attached to. One option is for users to 
provide labels, for example, our system could flash a visible 
laser onto a tag and ask “what is this?” (e.g., by voice inter-
face or smartphone app). Alternatively, our system could au-
tomatically identify objects based on their vibrational signal 
(e.g., pre-loaded library) when they first run, which we show 
is possible in our subsequent evaluation. 

Signal Processing & Featurization 
After our system finds all tags in its field of view, it cycles 
between them in a round robin fashion. We used a traveling 
salesman solver to find the shortest path between known 
tags. While seeking, the laser is turned off. Once a target is 
reached, our system waits half a second for mechanical os-
cillations to dampen. The laser then turns on and one second 
of data is recorded. We compute a spectrogram using a 50% 
overlapping, 512 window-sized FFT, which we use to com-
pute the max, mean, and standard deviation for each fre-
quency band (256 × 3 values), resulting in 768 features for 
machine learning. 

Detection 
For each object (i.e., tag), we train a two-class classifier: ac-
tive and inactive. We used a Random Forest implementation 
(default parameters) provided by Weka [20]. When Vi-
brosight seeks to an object, the corresponding classifier is fed 
live data to detect activity. As each object classifier is inde-
pendent, we innately support the detection of simultaneous 
events, and can easily add new object classifiers. 

 
Figure 9. Vibrosight driver/sensor board. 

 
Figure 8. Left: Vibrosight deployed on a celling; laser di-
ode and photosensor can be seen in the mirror’s reflec-

tion. Right: Illustration of key components. 



Open Source 
We make all source files (PCB design, 3D models, embed-
ded firmware, and software) available online for replication: 
https://github.com/FIGLAB/Vibrosight. We also include all 
data collected in our evaluation, described in the next sec-
tion.  

EVALUATION 
To investigate the accuracy of Vibrosight, we ran a multi-
stage evaluation in four indoor contexts: kitchen, gym, office 
and workshop. For portability, we deployed Vibrosight on a 
tall tripod, which we placed in the corner of each room. 
Within each context, we selected six common objects  to test 
(Figure 10), which we tagged with line of sight to our sensor. 
Active signals from all tested objects can be seen in Figure 
11, while Table 1 provides the distances and angles of the 
tags. 

Before collecting vibration data, we first ran three rounds of 
tag search as a test. We recorded the number of missed tags 
and any false positive tags found, manually correcting the 
data before proceeding. In each location, Vibrosight cycled 
between tags, collecting three seconds of data from each ob-
ject for four conditions: 

No Objects Active – All objects were turned off, with each 
object tag being sensed ten times in total (for each tag: 10 
cycles × 3 seconds of data)  

One Object Active – One object at a time was turned on, fol-
lowed by ten rounds of data collection for all objects (for 
each tag: 10 cycles × 6 active objects × 3 seconds of data).  

Two Objects Active – Two objects at a time were turned on, 
followed by ten rounds of data collection for each pairwise 
combination (for each tag: 10 cycles × 15 active object pair-
ings × 3 seconds of data) 

All Objects Active – All six objects in the room were turned 
on simultaneously, with each object being sensed ten times 
in total (for each tag: 10 cycles × 3 seconds of data)  

This procedure yielded 5,040 active instances and 11,520 in-
active instances from our 24 objects.  

RESULTS 

Tag Search Accuracy 
Across the 12 rounds of tag search we performed (4 locations 
× 3 rounds, with each location containing 6 tagged objects), 
Vibrosight failed on a single tag twice, resulting in a tag 
search accuracy of 97.2%. We note that no tags were missed 
when results from all three passes were combined. There 
were no false positive tags. 

Usage Detection Accuracy  
To investigate Vibrosight’s ability to detect if an object is 
active, we ran a leave-one-round-out cross-validation. Spe-
cifically, we trained detection classifiers on nine rounds (i.e., 
seek cycles) of collected data, and tested on the remaining 
round (all combinations, results averaged). This procedure 
prevents data with time adjacency from being included in 
both the train and test dataset.  

Across all objects, locations and conditions, Vibrosight 
achieved an average detection accuracy of 98.4% (SD=1.6). 
False positive activations are low: 0.7% (SD=0.5). We break 
out True Positive and False Positive rates across objects in 
Table 1. We found no correlation in accuracy between tag 
distance and angle.  

Vibrational Interference  
Vibrational interference can occur when objects vibrate so 
strongly that signals propagate through a structure and shake 
other objects. This can cause false positives, as inactive ob-
jects can begin to vibrate. Another failure mode occurs when 
an active appliance’s vibration signal changes due to the su-
perimposition of an external vibration, resulting in a new 
(i.e., unlearned) signal that can decrease true positive accu-
racy.  

 
Figure 10. Our 4 test locations and 24 objects (outlined in yellow). From left to right: Kitchen, Gym, Office and Workshop. 

 

 
Figure 11. Vibration spectrograms (0 to 2.5KHz)  

of our 24 test objects when active. 
 



To understand the effects of vibrational interference on our 
system, we break out results into the four data collection con-
ditions in Table 2. There was a small, but significant decrease 
in accuracy (2.3%) from one object active (no interference 
possible) to two objects active (potential for interference) 
conditions (paired t-test; p<.05). The confusion matrices sug-
gest that objects that sat on a common surface (e.g., table) 
experienced some interference. For example, in our kitchen 
location, the microwave and coffee machine sat on a com-
mon granite countertop, and interference between these two 
devices was responsible for 33.4% of all detection errors in 
the kitchen.  

Sampling Duration  
Shorter sampling durations per object are beneficial, as it al-
lows Vibrosight to cycle between tags in a scene more rap-
idly, allowing for detection of shorter activations and with 
less latency. However, less data could also lead to a decrease 
in detection accuracy.  

To investigate this effect in our study, our procedure rec-
orded three seconds of data from each object per seek. In a 
post hoc experiment, we followed the same validation proce-
dure as above, but varied our train and test data in duration 
from 0.1 to 3.0 seconds. We used the same 768 machine 
learning features, which are duration independent. As ex-
pected, accuracy drops as sampling duration decreases – Fig-
ure 12 plots this result. However, the drop in accuracy is not 
consistent across devices. Those with intermittent vibrations, 
such as the phone ringing (which contains pauses of ~1 se-
cond) are most impacted, while devices with consistent out-
put (e.g., coffee grinder) are unaffected down to around 0.2 
seconds. One second sampling duration appears to be a good 
tradeoff between speed and accuracy. 

Robustness Across Time 
To test Vibrosight’s performance across time, we ran a se-
cond session of data collection separated by one week. We 
placed our setup in a similar (but not exactly the same) loca-
tion. The data collection procedure was the same as before, 
except that we collected five rounds (i.e., seek cycles) of data 
instead of ten (resulting in 2,520 active and 5,760 inactive 
instances). We ran this newly collected data through our pre-
trained classifiers from week one. Average accuracy was 
96.2% (SD=2.1), with a false positive rate of 2.3% (SD=2.3), 
which was not significantly different than week one accu-
racy, suggesting robustness across time. 

Object Identification 
So far, we have only discussed Vibrosight’s ability to detect 
if objects are active or inactive. However, we found that vi-
brations of different appliances are quite unique (see Figure 
11) and might be used to infer object type without user label-
ing. For this test, we evaluated the accuracy of a 24-class ob-
ject classifier (SMO, Poly Kernel with E=1.0) using a leave-
one-round-out cross-validation (week one data, all condi-
tions, active instances only).  

Across our 24 objects, average identification accuracy was 
92.1% (SD=5.9); the confusion matrix is offered in Figure 
13. We can see that most of the confusion occurs within a 

 
Table 2. Accuracies across data collection conditions.  

 

 
Figure 12. Average accuracy vs. sampling duration (seconds). 

 

 
Figure 13. Confusion matrix of object identification (%). 

 
Table 1. Deployment details and accuracies for the 24 objects. 

 



location. We suspect this is due to the classifier overfitting to 
environmental noise (both lighting and EMI) and also 
vibrational interference between objects, where one object’s 
vibration is being picked up by another. Additionally, in the 
case of the gym, we included two objects of the same type 
(treadmill). If we discount confusion between the two 
treadmills as an error, average object identification accuracy 
is 92.8% (SD=5.5). 

SUPPLEMENTAL STUDIES & APPLICATIONS  
We now describe a series of focused, supplemental studies, 
as well as additional applications enabled by Vibrosight. 

Sensing Modes of Operation  
We found that many appliances vibrate uniquely when in dif-
ferent modes of operation, especially motor-driven appli-
ances. Figure 14 offers three examples: a dishwasher at dif-
ferent cleaning phases, a treadmill when a user is walk-
ing/jogging/running, and a milling machine at different 
RPMs. Vibrosight can easily leverage these characteristic 
signals to enable richer, object-specific classifiers.  

Detecting Objects and Activities on Work Surfaces 
One potential limitation of Vibrosight is that it is ill-suited 
for tracking small appliances that move around, such as 
blenders and staplers. We found, however, that we can tag 
host surfaces to capture vibrations. For example, Figure 15 
shows data and detection results from a tagged work surface, 
on top of which a user hammers, hand files and sweeps. This 
property allows Vibrosight to detect a much wider range of 
activities beyond large fixed appliances.  

To test this ability more formally, we revisited our four test 
locations and ran a supplemental study. We affixed a tag to 
one exemplary surface in each location and developed a new 
set of test classes: kitchen countertop (classes: chopping, cof-
fee grinder running, kettle boiling, blender running), office 
table (classes: typing, writing), workshop table (classes: 
hammering, hand filing, sawing), and gym mat (classes: 
jumping jacks, push-ups). Similar to our main study, we col-
lected 3 seconds of data for each class (including no activity) 

× 10 rounds. We then ran a leave-one-round-out cross-vali-
dation study (per location) using the same featurization and 
machine learning pipeline as before (i.e., SMO, Poly Kernel 
with E=1.0). Overall, Vibrosight was able to detect activities 
using surface vibration data with a mean accuracy of 89.7% 
(SD=2.3).  

Human Movement 
Human movement inevitably induces vibrations in the envi-
ronment. This is especially true for objects such as seating 
and beds. Figure 16 shows the signal from a sofa as a user 
sits down, which can be used to detect use and occupancy. 
Similarly, Vibrosight could monitor sleep restfulness if a tag 
is placed on a headboard or bedframe.  

User Input 
Vibrations resulting from knocking or tapping on a tagged 
surface are very apparent to Vibrosight. Thus, it is possible 
to support basic user input. Figure 17 offers one example 
where double knocking on a laundry machine instantiates a 
notification request (as Vibrosight also knows when the laun-
dry machine cycle is complete).  

 
Data Communication  
For devices with speakers, motors or other actuators, it is 
possible to encode information in the form of vibrations, 
which can be detected and decoded by Vibrosight. This 
opens an interesting communication channel for richer appli-
cations. For example, devices could emit their brand and 
model number (allowing a specialized classifier to be loaded), 
or an IP address to expose additional functionality.  

 
Figure 17. A user double knocks on a laundry machine to 

request a completion notification. 
 

 
Figure 14. Vibration spectrograms (0 - 500 Hz) of a dishwasher (left), treadmill (middle),  

and milling machine (right) in different modes of operation. 

 
Figure 16. Vibrosight can detect when this couch is in use. 

 

 
Figure 15. Vibrosight detects activities on a work surface.  
Signal and classification shown on laptop for illustration. 



As a proof of concept, we attached a retroreflective tag to the 
bezel of an LCD TV and used on-off-keying with a 1 kHz 
carrier emitted through the build-in speakers to broadcast a 
UID. Figure 18 offers an example transmission, which in-
cludes a 6-bit header, 4-bit payload length, 12-bit payload, 
and 5-bit tail.  

Leveraging Occlusion 
Occlusion of tags can also be used to infer activity infor-
mation. For example, it is possible to strategically attach a 
tag so that it is occluded when an object is in use, for exam-
ple, an eyewash station (Figure 19). Occlusion is easily de-
tected by measuring the reflected light intensity. 

 
LIMITATIONS 
Laser safety was a primary concern from the beginning of 
the project. To reduce the potential of harm, we limited our-
selves to lasers rated Class IIIA or below. It may be possible 
to use even lower-powered lasers with superior band-pass 
optics, photodiodes and analog frontend. We also endeav-
ored to reduce the duty cycle as much as possible, not only 
by scanning, but also with occlusion detection. Specifically, 
once we seek to a tag and receive no reflected light, we infer 
the tag is occluded, and immediately turn off the laser (within 
~1 ms), limiting accidental exposure.  

Similar to other optical approaches, our system requires line 
of sight and is affected by occlusion. To partially mitigate 
this, we most often deployed Vibrosight near the ceiling, 
which affords a good view of rooms. This is also a less con-
spicuous location and where sensors are typically deployed 
in commercial settings. If we detect that a tag is occluded, 
we can simply suspend classification, as opposed to produc-
ing an errorful result.  

Another limitation is that Vibrosight cannot observe multiple 
objects simultaneously, as our current implementation reads 
data from tags in a round-robin manner (pausing at each for 
e.g., one second). This limits our current system to events 
with sufficient duration. Fortunately, many appliances and 
activities have durations on the order of tens of seconds, 
minutes or even hours. There are also immediate ways to im-

prove our prototype with e.g., faster stepper motors and mul-
tiple lasers. Nonetheless, there are transient events (e.g., sta-
pling papers) that can occur and dissipate within ~100 ms, 
which would likely require a non-time-multiplexed sensing 
approach. 

CONCLUSION 
We have presented Vibrosight, a sensing approach for smart 
environments that uses laser vibrometry. Users can tag ob-
jects they wish to reveal to our system, which can then be 
used to sense vibrations at long distance. Through a series of 
experiments and evaluations, we demonstrate that our ap-
proach robustly detects activities at high accuracies. We also 
explored a range of supplemental uses for our system. We 
believe Vibrosight is a new and practical way to enable a 
wide range of interactive and context-aware applications for 
smart environment. We hope to encourage future work by 
open sourcing all project materials.  
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