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TextureSight: Texture Detection for Routine Activity Awareness with
Wearable Laser Speckle Imaging
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Fig. 1. Our hands engage with a wide variety of objects. These objects are o�en in contact with the fingers, which makes
for an ideal location for sensor instrumentation. TextureSight implements wearable laser speckle imaging to distinguish
between surface profiles (i.e., textures) for object recognition, which serves as a strong context clue for higher-order activity
recognition.

Objects engaged by users’ hands contain rich contextual information for their strong correlation with user activities. Tools
such as toothbrushes and wipes indicate cleansing and sanitation, while mice and keyboards imply work. Much research
has been endeavored to sense hand-engaged objects to supply wearables with implicit interactions or ambient computing
with personal informatics. We propose TextureSight, a smart-ring sensor that detects hand-engaged objects by detecting
their distinctive surface textures using laser speckle imaging on a ring form factor. We conducted a two-day experience
sampling study to investigate the unicity and repeatability of the object-texture combinations across routine objects. We
grounded our sensing with a theoretical model and simulations, powered it with state-of-the-art deep neural net techniques,
and evaluated it with a user study. TextureSight constitutes a valuable addition to the literature for its capability to sense
passive objects without emission of EMI or vibration and its elimination of lens for preserving user privacy, leading to a new,
practical method for activity recognition and context-aware computing.
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1 INTRODUCTION
Sensing user activities has long been researched as a key enabler in applications such as personal informatics,
mobile health, and context-aware computing. Much e�ort in literature has been devoted to activity-sensing
techniques using a wide spectrum of device form factors. Closely related to this work are prior systems worn by
users that monitor users’ hand activities as reliable indicators of user activity for their strong correlations (e.g.,
blender use indicates food preparation). Furthermore, the task of sensing hand activities could be equivalent to
sensing objects that are touched, gripped, or grasped by users’ hands. We call these objects hand-engaged objects.
For example, if a wearable senses that its wearer is engaged with a steering wheel, they are most likely driving.
Similarly, tools like screwdrivers and saws indicate fabrication works, while cookware implies a cooking activity.

To sense hand-engaged objects, one thread of research detects their activation signals such as electromagnetic
radiations [30, 59] and vibrations [29]. To sense objects that do not emit active signals (e.g., mugs, bags, steering
wheels), prior work has turned to vision-based approaches for solutions [34, 35]. These systems use wrist-worn
cameras pointing toward a user’s �ngers to have sight of hand objects to be detected. Although the set of detectable
objects could be highly comprehensive, this approach potentially induces concerns from users regarding privacy
for the possibility of the worn camera capturing unwanted information in the background. While obfuscation
techniques have been proposed [2, 51], whether these techniques could mitigate user privacy concerns in the
short or long term and improve the adoption of wearable cameras is left untested.

We propose TextureSight, a ring sensor that recognizes hand objects by sensing their textures using laser speckle
imaging (Figure 1). Our observation is that objects are comprised of unique combinations of surface color,
specularity, and roughness, all of which can be detected by laser speckle imaging. This is a promising vision-based
technique commonly used in the medical domain and recently demonstrated in smart-sensing systems in HCI
(e.g., [9, 47, 65, 75, 77]). It is uniquely leveraged in this research for hand-engaged object detection. As laser
beams scattered by surfaces are always in focus, our device does not require a lens in front of the CCD sensor,
meaning laser speckles form the only signal registered on the image while blurring out any information from the
background. We chose a ring form factor, which has been increasingly popular and has seen success in many prior
HCI systems (e.g., [3, 41, 57, 58, 74]). More importantly, it allows our sensor to be placed in contact with sensed
objects. With our mechanical design of the smart ring prototype, noise such as environmental illumination can be
shielded from our sensor while ensuring its constant distance from sensed objects to improve the signal-to-noise
ratio (SNR). To further improve our sensing performance, we used a dual-laser con�guration and adopted a
modi�ed state-of-the-art deep neural net inference pipeline.

TextureSight enables smart rings to sense hand-engaged objects, allowing contextual information to be seamlessly
collected without altering their users’ existing activities. Once this information is collected, it could be made
readily shareable with other smart wearables and computing modalities to power their context-aware applications.
We envision our sensing technique to coexist with other sensors on smart rings, making these devices more
capable of assisting users in their daily tasks and delivering pertinent information based on the user’s speci�c
context, ultimately contributing to a more intuitive and e�cient HCI paradigm.
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Our sensing technology is based on laser Speckle Imaging, which has been used conventionally in medical
applications for detecting sub-dermal signals such as blood �ow velocity for skin health monitoring [36, 45, 50].
It has also been recognized in HCI for its potential in high-resolution spatial tracking in interactive systems
(e.g., SpecTrans [47], SpeckleSense [77], Spedo [26], and Colux [56]). Closely related to our work are previous
systems that use laser speckle imaging to identify material types. Two pioneering works that inspired this
research are SpecTrans [47] and SensiCut [9]. Although both works recognize material types using laser speckle
imaging, they feature very di�erent applications from our research. We focus on laser speckle imaging in sensing
objects engaged by users’ hands, while prior work demonstrated explicit, transparent, and specular material
detection as an input technique (i.e., SpecTrans) and for improving laser cutting safety (i.e., SensiCut) with lasers
at �xed heights on laser cutting machines. However, neither of the previous works have demonstrated a compact,
wearable, and versatile design that worked on recognizing various surfaces with di�erent textures and assisting
users in their daily lives. The di�erence in target application requires di�erent design considerations, hardware
and software implementations, and systematic modeling and evaluations, all of which constitute our novel design,
given the literature.

To investigate the types of hand-engaged objects, their surface materials, and the unicity and repeatability of
the combinations of objects and textures, we conducted a study with six participants, collecting two days of
data from each using an experience-sampling approach. We then grounded our sensing principle by modeling
laser speckles, which was validated with simulations and an experimental real-world test. Results from these
investigations justi�ed our assumption that texture is of su�cient information to identify routine objects and
informed our sensor implementation, which we achieved with a bare CCD sensor chip, two low-power lasers,
and a 3D-printed enclosure. Finally, we conducted a user study of 11 participants using test objects informed by
the survey study. Overall, our sensor achieved an average accuracy of 88.20% in the detection of 20 objects.

2 RELATED WORK
In this section, we �rst review prior systems that leveraged laser speckle imaging in interactive systems. We
then move on to systems in HCI with smart ring form factors. Finally, we review sensing approaches in object
detection and activity recognition.

2.1 Laser Speckle Imaging
The characteristics of the micro geometry on a rough surface can be extracted when coherent and collimated
light falls on rough surfaces [8] and is captured by the camera when the light is scattered back, revealing the
surface information and enabling interactive applications. With static laser speckles, SensiCut [9] proposed a
material-sensing platform to recognize materials which are indistinguishable to the naked eye for laser cutting
according to the otherness of static laser speckles on di�erent surfaces of a �at plate. Similarly, SpecTrans [47]
presented a novel surface classi�cation method for specular, textureless, and transparent materials based on
the information conveyed by static speckles. In addition, dynamic speckles caused by surface displacement are
carriers of information from another dimension, which is the object’s locomotion along with time. Shih et al. [53]
took advantage of speckle motions to detect subtle tampering in 2D surfaces. The characteristics of dynamic laser
speckles can also be implemented in medical applications [4, 11, 14]. Furthermore, laser speckle imaging is not
limited to 2D motions, it can also track surface shifts in the 3D world [26]. For instance, CoLux [56] analyzed the
global scale-space speckle motion to acquire information about micro objects’ compound movements. Besides
motion and surface perception, it is also possible to sense minute vibration signals in the environment based
on the spatial change of laser speckles (i.e., laser speckle contrast imaging) [75, 76] and the intensity change of
them (i.e., interferometry) [75, 76] for human activity recognition. A long-range laser supports the feasibility
of low-power and city-scale sensing, which can be used for environmental perception in extra-large spaces.
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Although laser speckle imaging has been demonstrated, most prior systems are in stationary settings – deployed
in the environment or a�xed inside machinery. Recently, LaserShoes [65] recognized ground surface types
(e.g., asphalt vs. carpet) as a strong indicator of user locations for applications such as running assistance and
navigation.

Closest to our work is SpecTrans [47], which detects a unique category of surfaces, such as transparent showcase,
for explicit interactions, whereas our work detects a wide variety of surfaces on everyday objects including
ones with smooth, rough, hard, soft, and furry surfaces and of various colors and specularities for activity
recognition. To achieve this superior sensing capability, TextureSight leveraged a smart ring device mechanical
design that yielded high SNRs, a dual-laser con�guration with selected wavelengths to reveal high-�delity texture
information, and a deep learning pipeline that is best at inferring texture information from high-dimensional
data types. All of these contributed to the unique sensing advantages of TextureSight over literature.

2.2 Smart Rings
Smart rings elicit many possibilities for touch sensing, gesture recognition, and remote control due to their
wearability, dexterity, and maneuverability. For example, OctaRing [32] introduced an octagon-shaped ring device
enabling complex multi-touch detection implemented by pressure sensors. Likewise, TouchRing [58] also allows
for subtle multi-touch input using capacitive sensing, and it is capable of recognizing swipe and tap gestures
based on relative touch positions of the ring. With miscellaneous sensing principles having been employed in
the smart ring design, research e�orts have been invested in complex gesture recognition [16] implemented
via inertial measurement units [15, 22, 69], acoustic [72], magnet [3, 41], proximity [57], thermal imaging [73],
electrical sensing [27], or mixed approaches [70, 71] for remote controlling. For instance, Gheran et al. [17]
implemented car control buttons from a steering wheel to the smart ring without hand shifting or eye staring
while driving, providing a more e�cient and safer interaction via tap, touch, and mid-air gestures. Exceptions to
this trend are creative gesture designs speci�c to some smart rings only.

Smart rings also have the capability for personal care when omnifarious sensors are embedded [12, 37], which
provides near-in�nite possibilities for long-term physical and mental health monitoring. For instance, the ring can
be regarded as a mobile health system sensing physiological signals to assess physical and mental conditions. Wu
et al. [63] proposed a wearable ring-type pulse monitoring sensor for human pulse and temperature surveillance.
Multisensor smart rings were utilized to evaluate sleep quality by recording and assessing the signal of the
heart rate, skin temperature, and motions [21]. Except for the perception of the signal from the human body, the
wearable smart ring can also observe hand-washing duration and detect various �uid agents for monitoring hand
hygiene compliance and preventing diseases [74].

Our sensing technology further expands the sensing capabilities of smart rings, providing deeper context-based
insights for interaction. We uniquely enabled texture sensing with Laser Speckle Imaging using a CCD sensor in
concert with two laser diodes, enabling the detection of a wide range of objects with diverse textures and colors,
yielding contextual information that could be useful in many smart ring applications. Unlike prior methods, our
device shows robustness to environmental factors due to the shielded sensor con�guration. Furthermore, the
lens-free design ensures that only speckle information is captured, respecting privacy concerns by avoiding the
capturing of sensitive information.

2.3 Object Recognition through Wearable Sensors
Active objects emit distinguishable signals that propagate through space or the user’s body and can be detected by
wearables. For example, Viband [29] senses micro-vibrations from active hand-held objects propagating through
the arm, while Magni�Sense [59] and EM-Sense [30] capture electromagnetic radiation emitted from objects that
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run electricity. It is also possible to sense the motion of a user’s hand engaging with manipulations of objects for
�ne-grained activity recognition [28]. This section focuses on wearable techniques that share a similar sensing
principle with our proposed work – recognizing objects through their passive material or surface properties.

One of the most common approaches relies on computer vision. Camera approaches have been used on wearables
to recognize objects by their shape, color, and coarse texture [34]. G-ID [10] demonstrated that it is possible to
encode information into the surface textures of 3D prints for later identi�cation. Additionally, high-resolution
texture information (micro geometry) can also be sensed by commercial technologies such as pro�lometers (aka
3D surface pro�lers) commonly implemented with laser interferometry [39]. These pro�lometers reconstruct
surfaces at a high 3D resolution but cost thousands and are too bulky and heavy to be worn. SpeCam [68] uses a
front-facing camera and a screen as a multi-spectral light source on a smartphone to recognize surface materials
as important contextual information in mobile computing. SpectroPhone [49] employs the rear camera on a
smartphone with warm and cool white �ashlight LEDs, yielding photos that can be used to e�ectively di�erentiate
between a diverse range of materials with SVM. Closer to our project in terms of the wearable form factor is
Magic Finger [66], a wearable system that uses a miniature camera worn on the tip of a �nger to detect a wide
array of surface textures for always-available input (e.g., tap and gestural interactions).

Besides vision-based approaches, electrical sensing has shown promise in recognizing objects. For example,
Capacitivo [62] is a capacitive sensing approach that allows fabrics with conductive electrodes to sense objects in
contact due to their various dielectric properties. For similar applications, Tessutivo [19] recognizes objects with
inductive sensing. Daily objects also exhibit di�erent frequency responses to mechanical excitations, which could
be leveraged for recognition, as shown in Knocker [20]. With a wearable form factor, VibEye [40] detects passive
hand-held objects by sensing the di�erences between their resonance pro�les. RadarCat [67] detects objects
by inferring material properties from the re�ected millimeter-wave signals. Higher-frequency RF signals (e.g.,
Terahertz) have also shown promise in sensing material properties [48]. Other than sensing innate properties of
objects, researchers have also tagged objects with RF backscatters to facilitate their detection [5, 13, 31, 43].

While all approaches (including TextureSight) recognize hand activities by detecting the presence of side-product
signals, e.g., sound, EMI vibration, movements, and RF re�ection, TextureSight is the �rst that utilized surface
textures as that signal, based on the observation that hand-engaged objects are often of unique surfaces textures.
Additionally, we �rst leveraged laser speckle imaging in awearable form factor. To optimize the sensing capabilities,
we incorporated laser diodes with two wavelengths. We found this unique combination could better unveil
nuanced di�erences between surface textures that allowed us to enhance the accuracy of our system. Moreover,
we developed a comprehensive end-to-end signal processing and detection pipeline, ensuring improved e�ciency
in handling and analyzing the data and enabling a more robust and e�ective sensing approach for various
applications.

3 EXPERIENCE SAMPLING STUDY OF HAND-ENGAGED OBJECTS
We did not �nd datasets surveying hand-engaged objects in everyday settings, complete with labels of objects
and their surface materials, which we could use to reveal the unicity and repeatability of the object-texture
combination in daily activities. This lack of literature motivated our study in this section. Our hypothesis is
that objects routinely engaged with by a user often have unique textures. For example, a backpack will have a
di�erent material than a mug, a computer mouse, or an orange. Even if objects could be of the same material,
they are often made with di�erent fabrication techniques (weave patterns and densities of a backpack vs. a couch
arm). Even for objects of the same material and fabrication, the chance is high that they could feature di�erent
colors – another dimension that improves unicity. In this research, we considered all the aforementioned factors
(i.e., material, fabrication, and color) as part of texture information that could be leveraged. If the unicity of
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the object-texture combination within a user’s data is su�cient, texture can serve as equivalent information to
objects. It is of note that the unicity does not contradict repeatability – in an extreme hypothetical example of
someone using only one object over the span of our study, the unicity will be high for no same texture being
found on other objects, while the repeatability will be high also. In practice, participants used multiple objects in
this study which lowered the repeatability. However, the unicity remained high if there were no two or more
objects sharing the same texture.

3.1 Procedure
We conducted a survey study of eleven participants using the experience sampling approach [6]. Our participants
were drawn from the student population at a university in North America. We gave participants a smartphone
(Samsung Galaxy A01) with an app which we developed to facilitate participants’ sampling of objects they
engaged with using their hands. Over the course of three days, participants received noti�cations every 15
minutes from 10:00 a.m. to 9:45 p.m. inquiring about objects with which their dominant hands were engaging.
We provided an option to opt-out, which was often used when their hands were not engaged with anything,
or when they intentionally wanted to skip the round. After our app guided the participants through the photo
taking, it asked them to label the names of the objects. At the end of the study, the participants returned to
the researchers for a review process in which researchers reviewed the collected data with the participants to
label the material type of surfaces their hands were touching. "Unknown" was labeled when participants had
their hands engaged with nothing or skipped the noti�cation. In this study, we recruited 11 participants. We
dropped data collected from 4 participants who skipped more than half of the noti�cations during the study.
Being mindful of the di�erence in activities over weekdays and weekends, we partitioned participants into two
groups – those who yielded data only during weekdays (n=4) and those only during weekends (n=3). In total, we
collected 716 photos over 11.75 hours from the remaining 7 participants. Among this data, 408 photos (23.5 hours
from 4 participants) were collected on weekdays and 308 photos (23.5 hours from 3 participants) on weekends.

3.2 Results
Figure 2 shows the collected images from all participants. Note that unknown labels (40.7% of total labels) were
marked with crosses. We found 203 objects in total, averaging 29 objects (SD = 8.21) per participant. Across these
objects, a total number of 12 material categories were found.

UnicityWe also realized signi�cant unicity in the study. Upon visual examinations of photos collected in the
experience sampling and investigations with participants during the post-sampling walk-through, we realized
that it was very unlikely that objects used routinely by a participant would share similar textures (i.e., the
same combinations of material, fabrication, and color). Although objects of the same type (e.g., laptops and
phones) might have shown identical combinations (e.g., MacBooks of di�erent types could use the same gray,
oxidized aluminum), these objects often feature similar functions that do not hinder our overarching goal of
object detection, which is to infer user activities. We plotted the relationship between materials and the touched
objects in Figure 3 (left). We observed a prominent trend wherein the majority of touched items were composed
of plastic, silicone, and metal. Interestingly, these three materials also happen to be the most prevalent substances
in our daily lives. For instance, metal is a key component in devices like MacBooks, and plastic is frequently used
for items like computer mice.

What adds further intrigue is that these materials are manifested in various forms, such as distinct patterns, colors,
and other characteristics. This inherent diversity in attributes contributes to the uniqueness of their combinations
and thus the texture of touched objects. In other words, even if objects share the same material composition,
the presence of dissimilar colors, patterns, and textures sets them distinctly apart from one another. Through a
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comprehensive analysis of each individual participant’s touched objects and a thorough review across all seven
participants, we did not identify any instances of objects sharing identical textures among all 716 objects in our
three-day survey study.

Repeatability We also observed signi�cant repeatability of the object-texture combination our participants
engaged with over the course of the study. Figure 3 (right) shows this result. We used the object-texture combi-
nation as a unique ID for each object our participants showed in their data and cross veri�ed them during the
review process. Using these IDs, we were able to calculate how often they were repeated in the collected photos.
This also sheds light on the feasibility of the texture-based object/activity detection our work is built upon. High
repeatability indicates a higher ratio between performance and calibration e�ort. In one extreme scenario, if
there is only one object that a user wants to detect (e.g., the steering wheel for logging the driving time), the
user would only need to calibrate the system with one type of signal. In practice, users often engage a variety
of objects but the repeatability test can reveal the feasibility of having carefully weighted detectors for most
common signals. This technique is widely used in interactive systems – e.g., having the most frequently used
functions at the most obvious locations or with buttons of relatively large sizes. Interestingly, the result from
this investigation reveals a long-tail distribution that roughly follows the Pareto Principle 1. The top 10 most
frequently engaged object-texture combinations accounted for around 80% of all samples in the data collection.
The percentage is around 60% for the top 3 combinations, revealing high repeatability that texture-based object
detection approaches can leverage.

4 SENSING PRINCIPLE
Laser beams are coherent, consisting of light waves that are in phase. When re�ected from rough surfaces,
these light waves interfere constructively and destructively in 3D, forming bright and dark regions, the union of
1Pareto Principle: https://en.wikipedia.org/wiki/Pareto_principle

Fig. 2. Photos of hand-engaged objects collected during our experience sampling survey study. "X" image means the
participant touched nothing or skipped the notification at that time.
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Fig. 3. Le�: The distribution of material presence percentages among users. Right: Repeatability test. Top 10 most frequent
object-texture combinations – averaged count (blue) and cumulative percentage (orange) in three days.

which is called laser speckles. Prior work has detailed the formation of laser speckles with illustrations [9, 77],
which we skipped here for simplicity. The correlation between surface micro-geometries and laser speckles has
been discovered in the literature [33, 54, 64]. For example, statistics such as Contrast, Correlation, Energy, and
Homogeneity calculated using a co-occurrence matrix on speckle images (i.e., an indication of how often pairs of
pixels with speci�c values and in a speci�ed spatial relationship occur in an image) were used as an indicator of
surface roughness – a common technique for vision-based systems (see [33] for details). We focused on inherent
factors in textures and the imaging systems that a�ect laser speckle size and shape. In this section, we �rst
introduce the theoretical model we used to correlate the shape of laser speckles with surface micro-geometries,
laying the foundation of our sensing principle. We then validate this model with simulations of synthesized
speckle images proving the discernibility of speckle patterns generated by di�erent surface textures.

To simulate the laser speckle patterns, we implemented the Gaussian beam as the incident light in MATLAB for
simplicity because the Gaussian beam is often the most desirable type of beam provided by a laser source [1].
The rough scatter �eld is designed by the di�erent surface height function ⌘(U, V). Equation 1 [60] describes the
distribution of the Gaussian beam with wavelength _ on the rough surface after the phase variation induced by
microgeometry on the scatter �eld. In Equation 1, k is the wavenumber de�ned by the formula 2c

_ ; l0 and l are
the waist radius and enlightened beam spot radius, respectively. Equation 2 [60] denotes the scattered Gaussian
beam propagated for distance I from the rough surface (U, V) to the observation plane (G,~) modeled by the
Fresnel-Kirchho� di�raction integral [52]. It is of note that (U, V) corresponds to the coordinates (G,~) on the
surface. We utilize the notation of the (G,~) coordinates in our observation plane.

*B20CC4A (U, V) =
l0

l
4� (U2+V2 ) ( 1

l2 + 8:
2d �8:I ) ⇥ 48 2c_ ⌘ (U,V ) (1)

*>1B4AE4 (G,~) =
48:I

8_I
⇥
∫ 1

�1
*B20CC4A (U, V)4

8:
2I (U2+V2 )4�

8:
I (GU+~V )3U3V (2)

4.1 Laser Speckle Pa�erns
To better explain our observation, we decompose laser speckle patterns into two major aspects – individual and
collective, with the individual aspect depicting one laser speckle while the collective aspect depicts interactions
between multiple laser speckles. Speci�cally, the individual aspect includes the shape and perimeter of individual
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laser speckles. These two factors are a�ected by the distance between the laser source + imager and the surface I,
the wavelength of the laser _, and the cross-section of the laser enlightened area on the surface l . We refer to
[60] to calculate the mean speckle radius ' (see Equation 3). Generally speaking, the speckle radius increases
with the laser wavelength, meaning the distance between the imager and the illuminated area. It is inversely
proportional to the size of the illuminated area.

' =
_I

cl
(3)

The collective aspect of laser speckles is the spatial pattern of a group of adjacent laser speckles, mostly referring
to the spacing between them. These high-level descriptions could not depict the real complexity of laser speckles
– since laser speckles have irregular shapes, the "distance" between them cannot be represented with simple
mathematical terms nor common wording. We refer to Figure 5 to show laser speckles induced by di�erent
real-world surfaces. We will later describe the data collection setup and procedure that generated these images. It
is of note that laser speckle patterns consist of both bright regions (the laser speckles) and dark regions due to
constructive and destructive interference. Based on this theory, the distance between speckles should equal the
speckle size. However, in practice, we found that con�gurations of the imager also contribute to the distance
between speckles. Weak re�ections due to darker surfaces or opposing colors of the surfaces and the excitation
of the light, could result in more dark regions and thus larger distances between laser speckles (see Figure 5 for
examples).

At a micro-scale, a rough surface can be modeled as geometries consisting of micro surfaces at various distances
to the imager, manifesting as both the size of speckles and the distance between them. This explains the irregular
shapes of speckles. The spatial characteristics of these micro surfaces, de�ned by surface textures, mostly
contribute to the irregularity of speckle shapes, which we hope to infer and use to reveal texture types.

4.2 Simulations on Synthesized Surfaces
We simulated surfaces with mathematically simple equations to verify the factors of surfaces that decided laser
speckle characteristics, investigating the e�ects of surface roughness on speckle shape, size, and distribution.
We used simple mathematical forms to generate random-roughness surfaces. As in previous simulations, we
used Gaussian beams to simulate laser light and Fresnel-Kirchho� di�raction to model the interference of the
backscattered light waves. We �rst conducted a series of simulations to con�rm factors that a�ect individual
and collective aspects of laser speckles using a random rough surface (Gaussian noise, f = 50), changing the
distance between the surface and the laser-imager bundle (i.e., from 0.5 cm to 1.5 cm at 0.5 cm intervals), the laser
wavelength (i.e., 380 nm, 560 nm, 740 nm), and the radius of the illuminated area (i.e., from 50 `m to 150 `m at
50 `m intervals). Figure 4 shows our results. We found the average size of laser speckles increases with distance
and wavelength but decreases with enlightened area, which is consistent with our model. All simulations were
performed in MATLAB using our custom tool, which performs calculations according to Equations 1, 2, and 3.
These �ndings from synthesized laser speckle images were also con�rmed via measurements from real-world
surfaces (see examples on Figure 1 and 5) and our empirical observations in the data collection.

4.3 Laser Speckles on Real-World Surfaces
To get a sense of laser speckles induced on real-world surfaces, we collected data using an imager with a bare
CMOS sensor (2.2 `m pixel size, 2592 ⇥ 1944 resolution), from materials including wood, porcelain, plastic, fur,
leather, paper, fabric, rubber, foam, metal, and silicone, all with their natural colors or those that are common to
�nd. We disabled all auto-adjusting functions on the camera and con�gured an exposure time of 20 ms with a
gain of 0 dB. The laser-imager bundle was placed 40 mm away from these surfaces with the help of a �xture
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Fig. 4. Synthesized laser speckle images from the simulations with varied parameters of lasers, imagers, and the enlightened
surfaces, investigating three key factors – le�: illuminated area l , middle: distance between the laser source+imager and the
surface I, right: laser wavelength _.

Fig. 5. Gray-scale laser speckle images from 12 real-world surfaces, labeled with material types and microscopic photos.

similar to the enclosure on the �nal ring prototype. This �xture spaced the laser-imager bundle at a �xed distance
away from surfaces when it touched down onto surfaces. Figure 5 shows the collected speckle images labeled
with the names of materials and their microscopic images (400x magni�cation). First, real-world textures exhibit
a wider variety of irregular surfaces, each possessing distinct characteristics which are discernible to the naked
eye. Additionally, the color of the surface is a major factor in the images of laser speckles. Strong re�ections
resulted in images with shorter distances between speckles (i.e., stronger overall intensity) due to the innate
brightness of the surface color, and its interaction e�ect with the excitation laser light. This result reinforced our
belief in leveraging surface color as part of the texture information in later inference tasks. In the supplementary
study, we compared the merits of color with those of micro geometry in regard to the sensing performance.

4.4 Guidelines for Sensor Implementation
This series of simulations and real-world measurements provided guidelines for our sensor implementation.
First, an ideal image of laser speckles should show speckles at su�ciently large sizes as their shapes contribute
important information to the classi�cation of textures. In this regard, a wearable sensor should decrease the
illuminated area, increase the sensor distance to a surface, and increase the laser wavelength (Figure 4). To
achieve these desired con�gurations, we added a mask laser with a tiny hole to the laser diode to reduce the
illuminated area, attached the sensor to the far side of the ring prototype against surfaces to achieve the longest
possible distance between them both, and chose relatively large laser wavelengths, although the selection of laser
wavelength was mainly decided by the experimental results from which we picked the best performers. From
real-world measurements, we found that the color of surfaces to be a major factor in the images of laser speckles.
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Fig. 6. Ring prototype of TextureSight . From le� to right: front side (palm side) view of the ring prototype with masked laser
diodes and endoscopic imager inside, side view of the ring prototype worn on a user’s hand, laser dots landed on object
surfaces.

We subsequently decided to use two lasers with di�erent wavelengths to further expose this information for
texture detection. Finally, we observed that there were textures, such as paper and fabric which could yield dim
speckle images, making it susceptible to noise such as illumination from the ambient environment. To address
this, we designed our ring prototype so that the ring body constitutes the enclosure of our sensor, keeping
environmental noise from our sensor and the surfaces it senses while maintaining a constant distance between
them when the surfaces are in contact with the ring prototype (Figure 6). We document the implementation of
this ring prototype in greater detail next.

5 TEXTURESIGHT IMPLEMENTATION
5.1 Ring Prototype
Our sensor features a ring prototype and the corresponding software. In a nutshell, the ring prototype features two
lasers which take turns to illuminate the surface of a hand-engaged object. The re�ected light, which manifests as
laser speckles, is captured by a bare CCD module. The resulting images are streamed to a PC for signal processing
and inference through USB. The PC also runs a Python script that controls the laser toggling and CCD module
photo taking.

5.1.1 Laser. We used two laser diodes as the excitation laser lights – one green laser of 520 nm wavelength
(less than 1mW, Class II) [24] and one red laser of 650 nm wavelength (less than 1mW, Class II) [25], as a simple
dual-spectral con�guration. It is of note that the output powers mentioned above were all maximum output, the
actual consumed power was determined by the actual voltage and current across the lasers. In iterations, we also
tried a blue laser diode but eventually removed it for a modest gain in performance and bulky form factor. The
laser diodes on the ring prototype were masked with aluminum-coated paper which has a hole of 0.3 mm in the
center (Figure 6), limiting the laser beam waist to enlarge the laser speckle size. This design allowed us to capture
large speckles that contained rich shape information, preserving the CCD module’s pixel density. These two laser
diodes were bundled side by side pointing along the direction of the palm (Figure 6). The current implementation
has these two lasers �t through the space between the ring and the little �nger.

5.1.2 Repurposed endoscopic imager. Miniaturized camera systems are commercially available and have been
widely used in applications such as endoscopic imaging. We acquired an endoscopic imager circuit board [7]
which featured a CCD module with a resolution of 640⇥480 at 30fps and a signal processor that streamed the
formatted pixels to the USB interface. A thin USB cable was tucked along the roots of �ngers. Figure 6 shows a
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Fig. 7. The ResNet50 model structure with transfer learning as well as the composition of dual speckle images input.

closeup photo of this imager circuit board. This imager was placed inside the ring on the root of the ring �nger.
The CCD module was angled at around 45º to have the two laser dots around the center of its principal axis for
maximum signal strength. We manually selected a region of the highest intensity on the laser speckle image to
crop when each laser was on. The size of the cropped images will be introduced later in the software section.
This was the only calibration we needed once each ring prototype was made.

5.1.3 3D-printed ring enclosure. Figure 6 shows our 3D-printed ring enclosure. The ring could be printed in
various sizes to adapt to the wearer’s �nger width. It was attached to a capsule that measured 36mm (length) by
18mm (width) by 7mm (height). The capsule had a cavity that contained the two lasers and the imager. These
components were placed close to the root of the ring �nger, ensuring the longest possible distance between the
imager and the laser dots, which measured 8.6mm. The bottom of this capsule was hollowed with a 16mm by
12mm opening to allow the emitting and returning light beams to pass through the cavity inside the ring body.
This opening was where objects were in contact with the ring prototype. We painted the interior of the capsule
black to isolate our sensor from the ambient light which could cause turbulence to the sensing. The enclosed
cavity was shielded from the ambient light by our ring enclosure for robustness, and we did not �nd any e�ect
from illumination in the environment on our sensor’s performance.

5.2 So�ware
For toggling the lasers one by one without interference, we used a programmable DC power supply connected
to the LAN and then communicated with the PC via socket. The scripts were able to send SCPI commands and
retrieve the data back from the DC power supply. We were then able to control the laser in terms of turning
di�erent colors on and o� at a speci�c frequency and sequence.

5.2.1 Signal processing. The green laser and red laser would be activated and turned o� successively, being lit
up for a short period of time when responding to the instructions sent from scripts. Note that only one laser
would be lit up at one time to avoid mutual interference. While the green or red laser illuminated the surfaces,
the CCD module was triggered to capture speckle images synchronously and paired the speckle image from the
green laser and the consecutive speckle image from the red laser as an atomic pair, which can be regarded as a
signal input for the deep learning model we discuss next. Before a pair of speckle images were fed into the model,
the recorded speckle images were cropped by the size of 224⇥224 pixels, then converted from RGB to grayscale2.

2Matlab rgb2gray: � = 0.2989 ⇥ ' + 0.5870 ⇥⌧ + 0.1140 ⇥ ⌫
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5.2.2 Deep learning inference. The speckle images captured are abundant in characteristic, minuscule, and
unique geometrics features. Convolutional neural networks perform well in learning spatial features with higher
e�ectiveness compared to other techniques [38]. In various deep learning models, residual neural networks
(ResNet) [23] are widely used for complex image recognition, o�ering excellent performance. In our early
experiments, ResNet50 performed similarly to other variances and thus was chosen for implementing TextureSight
for its balanced expressivity and training complexity. We expect other variances of ResNet to work well for our
sensing approach, and they might perform better given the resource constraints of application-speci�c host
systems in real-world use cases of TextureSight. Our DL model shown in Figure 7 was trained using the PyTorch
library [42] based on a pre-trained model with the ImageNet dataset [46]. An atomic pair of grayscale speckle
images generated by the green laser and red laser illumination were stacked into two layers and fed into the
dual-channel model. It is of note that these images were randomly rotated as a common data augmentation
technique in the literature [55]. During the training process, a stochastic gradient descent (SGD) optimizer was
employed and trained for 60 epochs where the learning rate and batch size equaled 0.0001 and 32, respectively. We
chose the state-of-the-art deep learning approach for its superior generalizability and replicability over bespoke
ones, lowering the barriers and creating benchmarks for others to leverage our sensor and join forces in wearable
laser speckle imaging research.

6 EVALUATION
To evaluate TextureSight, we conducted a user study including 11 participants. Each participant was instructed
to wear the ring prototype and touch/grip various objects and surfaces commonly found in everyday settings,
elicited by the experience sampling survey study. The variance in signals induced by di�erent users and their uses
is trivial, as the ring prototype is expected to be in contact with objects and surfaces, leaving nearly no leeway.
Nonetheless, we incorporated users into our evaluation as they might still induce some unexpected variance due
to their varying grip force, hand poses, and locations of touch, all of which – especially those that vary from user
to user – are potential factors worthy of investigation.

6.1 Setup
11 participants (2 Females, 9 Males, mean age = 25.2) were invited to the study. 20 objects were included in the
study (Figure 1). We referred to the objects observed in the survey study and picked those that are common
in everyday scenarios, feature a variety of materials, and are available to the source where this research was
conducted. Due to time constraints our study to under one hour, only 20 objects were used. However, a thorough
investigation with a wider set of objects should be considered in future work for further insights into our proposed
sensing technology and its performance. The study was conducted in a lab environment with 19 handheld objects
on a table and a large object (i.e., mops) on the ground near the table. Participants were seated in front of the
table and could stand if they preferred.

6.2 Procedure
There were two data collection sessions for each participant with a 10-minute break in between. In each section,
participants were instructed to grip/touch objects as naturally as they would in their everyday uses of these
objects. The ring prototype was placed on the ring �nger of a participant before the data collection began. After
the participant had a grip on or was touching an object, the ring prototype turned on the green laser (the red
laser was o�) and shone for ~0.3 seconds while 10 photos were collected. The red laser was then turned on (green
laser was o�) for ~0.3 seconds while another 10 photos were collected. These photos were paired and yielded 10
dual-channel (green+red) laser speckle images (i.e., 10 atomic pairs). The above procedure constituted one trial.
In total, we collected 10 trials per object in each session, wherein we asked the participant to let go of the object
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Fig. 8. Accuracy evaluation results for cross-user touching item recognition study – le�: classification accuracies among 11
participants in the user study; right: averaged confusion matrix of 20 objects from 11 participants.

and grip/touch it again to start a new trial. We collected 4,000 speckle images (2 sessions ⇥ 10 trials ⇥ 20 objects
⇥ 10 green+red speckle images) for each participant and obtained 44,000 images across 11 users in total.

6.3 Results
A cross-user test method was employed to validate object detection performance using dual channel laser speckle:
In the user study, we collected data from 11 participants. For each participant, data collected during both sessions
of the user study was used as the test dataset; eight participants were randomly selected from the remaining ten
participants, excluding for the tested user, and their data was used as the training dataset. The data from the
remaining two participants was used as the validation dataset.

Figure 8 shows the classi�cation accuracies among 11 participants and the confusion matrix revealing the
recognition accuracies on each object. The average accuracy of the detection of 20 objects detection across 11
participants is 88.20% (SD = 4.13), where precision is 87.33% (SD = 3.57), recall is 85.88% (SD = 4.27), and F1
score is 85.57% (SD = 4.48), which proves the feasibility of wearable laser speckle imaging in detecting hand-
engaged objects. Our method also exhibited high detection accuracy (over 90%) for re�ective materials like metal
(bottle, MacBook) and translucent items (plastic bag), indicating its adaptability to a wide range of textures and
materials. However, challenges were observed in certain object classi�cations. The confusion matrix indicated
lower performance for distinguishing objects chair arm and mouse, possibly due to their shared plastic material
and black color, as well as the similar surface textures. Additionally, objects with curved surfaces like steering
wheel and mouse also negatively a�ected the classi�cation accuracies. This issue arose because our current ring
prototype did not fully conform to touching curved surfaces, leading to variations in laser speckles caused by
leaks of ambient light into the ring enclosure and small variations of distance from the sensor to object surfaces.
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Returning to the results from our survey study, the long-tail e�ect should have a signi�cant impact on the actual
classi�cation results. Speci�cally, objects that are more frequently used, if not receiving a sound classi�cation
accuracy, could lower the overall classi�cation performance. We believe it also poses an opportunity, for our
classi�ers to prioritize more frequently used objects (the top 10 objects, which account for 80% cumulative
percentage) to achieve a better overall performance and thus user experience. Reducing the number of labels
should yield higher classi�cation accuracies (greater than 88.20% on 20 objects) in our work. That being said,
we are cautious that recognition of rarely occurring objects should also contribute to user experience, and the
tradeo� between overall performance and the recognition of such items is worthy of further investigation in the
future.

Due to computational limitations on the smart ring, we opted to collect data and perform o�ine testing while
prioritizing data collection in our user study. However, our data collection pipeline and the test scheme should
have yielded insights consistent with real-time tests, with each frame classi�ed and assigned a label independently
from neighboring frames and no tested frame included in the training data. To verify this hypothesis, we conducted
a series of real-time tests on some example user cases in the following section. The results of these real-time are
closely aligned with the outcomes obtained from the user study, a�rming the reliability and e�ciency of our
sensor in real-time object detection.

6.4 Supplemental Studies
The main study focused on the core sensing capability of TextureSight – di�erentiating surfaces of di�erent
textures. We also conducted a series of supplemental studies to further our understanding of the proposed sensing
technique.

6.4.1 Dual-laser vs. single-laser configuration. We investigated the merit of having multiple laser wavelengths
(colors) in the inference tasks. Red and green lasers were chosen as they are commonly available and have distinct
wavelengths in the visible spectrum. Red lasers typically have a longer wavelength (around 650nm), while green

Fig. 9. Evaluation results of touching item recognition with single laser speckle input – Le�: Average classification accuracies
from a dual and single input, Right: The mean detection accuracy of individual objects was calculated from data collected by
11 users under illumination from either green or red lasers with speckles.
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Fig. 10. Top: Microscopic image and speckles illuminated by the green and red laser of papers with 8 di�erent colors. Bo�om:
Microscopic image and speckles illuminated by the green and red laser of 8 di�erent materials but all in black color.

lasers have a shorter wavelength (around 532nm), resulting in di�erent and complementary laser speckle patterns
that maximize the information gain. Moreover, the contrast and visibility of the speckle patterns can be impacted
by the laser colors and surface conditions, making it possible for certain materials or surfaces to respond better
to one color over the other. In this case, the dual-laser con�guration might yield unnecessary noise. To verify this
hypothesis, we decided to investigate the performance of touching item classi�cation with single green and red
lasers. Speci�cally, we kept the same backbone of the deep learning structure and the train-test scheme used
in our main study, which is the ResNet50 trained for 60 epochs, but varied the input signals – two additional
sets of results were reported by using the green laser only and the red laser only. Figure 9 (left) shows the
average classi�cation accuracies comparing the performance of dual and single speckle inputs and the confusion
matrices resulting from the green-laser-only and red-laser-only con�gurations. We found that the dual-laser
con�guration yielded the highest accuracies across 11 participants among the three setups, followed by the
red-laser-only con�guration, in which the average classi�cation accuracy among 11 participants equaled 84.60%
(SD = 6.89). The performance was the worst when only the green laser was used (mean accuracy = 80.16%, SD =
4.21). Furthermore, we investigated the dual laser classi�cation accuracy compared to using red and green lasers
on each individual object. Figure 9 (right) shows these breakdown results. When using the red laser, the dual-laser
approach consistently outperformed or at least equaled the performance of using the red laser alone, particularly
in improving detection accuracy on curved surfaces such as bottle, mouse, and steering wheel. On the other hand,
the green laser exhibited greater sensitivity to changes in surface roughness and textures, while a better and
more stable detection performance was obtained when employing the dual lasers. This result con�rmed our early
speculation that di�erent laser wavelengths yielded complementary information about the texture, improving
the sensing performance.
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6.4.2 Near-Infrared laser vs. Green/Red laser. We collected all 20 objects that appeared in the user study from one
participant for testing using near-infrared, green, and red lasers. We captured 200 speckle images of each object’s
surface, which were acquired under each laser type. These images were then divided into a 7:3 ratio for training
and testing purposes. Remarkably, the utilization of solely the near-infrared laser yielded a detection accuracy
of approximately 76%, which was notably lower when compared to the performance of the green laser alone
(~81%) and the red laser alone (~85%). To highlight disparities in detection accuracy for particular objects, the
identi�cation of hair exhibited an accuracy of just 40%, and the detection of a steering wheel fared even worse
at a mere 23% with a near-infrared laser. In contrast, the green laser achieved higher accuracy rates for these
objects (hair: 92%, steering wheel: 85%), while the red laser also displayed commendable performance (hair: 84%,
steering wheel: 62%). Beyond singular laser use, we explored concatenated combinations. The fusion of green
and near-infrared lasers resulted in an overall classi�cation accuracy of around 86%, whereas the amalgamation
of red and near-infrared lasers achieved an accuracy of roughly 83%. However, all these single laser wavelengths
and combinations of wavelengths performed worse than the red and green laser combination (93% accuracy) for
that participant.

6.4.3 E�ect of color and micro geometry. The interaction between excitation laser light and surface color manifests
as the intensity of re�ection, which a�ects the distance between laser speckles (as previously discussed in section
4.1). TextureSight leverages the color and micro geometry of surfaces both of which are constituent factors that
decide surface textures. In our main study, we found that surfaces of similar colors yielded more confusion
than others (e.g., mouse and chair arm). To tease out our sensor’s performance along each factor, we conducted
two rounds of data collection, each consisting of materials of the same color (i.e., black) and the same texture
(i.e., paper). The upper three rows of Figure 10 show the laser speckle images collected from papers of eight
di�erent colors, and the bottom three rows show those collected from various surfaces of the same/similar black
color. The �rst row displays the micro geometries of touching surfaces, and speckle images generated under the
illumination of the green laser and red laser were placed on the second and third row, respectively. Although
the microstructure has slight di�erences between di�erent-color papers due to the manufacturing and dyeing
processes, the speckles look much semblable among each other compared to the di�erent surface textures with a
similar black color. Various surfaces, by contrast, o�er immense di�erences in micro geometries which make the
speckle images much more distinguishable. Based on this result, we conclude that although both the color and
micro geometry of textures contribute to signals that show in laser speckle images, the latter is the dominant
factor that decides the shapes of laser speckles, yielding more information for texture (object) recognition.

6.4.4 Touch segmentation. Segmenting touch from no touch allows our sensor to preserve power by only
making inferences of laser speckle images collected when users’ hands are engaged. In practice, di�erent sensing
techniques such as proximity, pressure, and capacitive sensing can be used to segment touch at high accuracies.
We also investigated the feasibility of using only laser speckle images in touch segmentation. Figure 11 shows
laser speckle images collected when the ring sensor was in contact with various surfaces, and compares them
with those collected when the sensor hovered above the surfaces at di�erent distances. Local speckle contrast  
is an important indicator for measuring the blurriness of the speckles, which is de�ned by the ratio of standard
deviation and the mean of the pixel intensities within a prede�ned area [50]. The value of the local speckle
contrast ranged from 0 to 1 (0 meaning the speckles are totally blurry and 1 denoting the speckles are completely
static and stable [44]). The laser speckle becomes more salient with the increasing distance between the surfaces
and the CCD module.

In our experiments, thresholding the value of the local speckle contrast at 0.37 can segment touch e�ectively in
the presence of ambient light. However, when this experiment was performed without ambient light (Figure 11
last row), we found that the local speckle contrast value alone is not su�cient to segment touch – additional
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Fig. 11. Laser speckles on four kinds of texture with di�erent distances from 0mm to 10mm with a 1mm interval under two
circumstances: the first four rows show the speckles recorded with ambient light; the last row shows the speckles collected
under completely dark environments. The local speckle contrast K measures the blurriness of speckles to determine whether
the speckle quality for classification, also indicates whether our hand truly touched the object or not.

sensory approaches are needed. Overall, the results indicate that using other sensors (e.g., a force sensor) to turn
on the wearable laser speckle imaging sensor should be a more practical and reliable approach in real-world
applications. It is of note that although this experiment illustrated that ambient light would in�uence the quality
of speckle imaging, our ring prototype is completely isolated from outside lights except for the laser beam when
the user touches the surfaces due to its cavity design.

Finally, we observed frames with blurry speckles, which we term "motionary" frames, caused by hand movements
when there was loose contact between the smart ring and the object. These motionary frames could yield errors
in the recognition result, to eliminate such errors, TextureSight could use the same aforementioned indicator of
blurriness to dismiss all motionary frames during touch segmentation and pass only high-quality laser speckle
images when there is solid contact between the smart ring and the engaged objects. Additional assistive sensors
able to measure contact force and lateral movements could also help identify motionary frames. The current
implementation of our system does not include this elimination of motionary frames, which we acknowledge as
a limitation and plan to implement in future iterations of the systems.

7 EXAMPLE USE CASES
To demonstrate TextureSight, we developed a series of exemplar use cases spanning across activity logging, food
journal, smart environment automation, work�ow assistance, authentication, ID tags, and education (see also the
Video Figure). We also show a clustering technique to enable "few-shot" use experiences that lower the burden of
user labeling. Note that all of the following scenes are powered by the aforementioned detection pipeline in the
paper.
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Fig. 12. TextureSight enables logging of activities in a kitchen example: A) using the espresso machine (touching its portafilter
handle), B) consuming paper towels, and C) taking out food from the fridge.

Activity LoggingMost activities have their regular and speci�c indicator objects. For instance, people usually
touch keyboards and mice when they are studying or working, whereas they touch knives, forks, and spoons
while eating. In this case, detected textures could be translated into user activities, the logging of which, could
power applications of personal informatics. In this example, TextureSight could keep track of which type of
activities its wearer has been doing and for how long (Figure 12). Similarly, TextureSight could recognize surfaces
of fruits and vegetables to facilitate food journals (Video Figure).

Fig. 13. TextureSight could power context-aware applications such as home automation: A) speaker is muted during presen-
tations, and B) light is dimmed when a pillow is grasped.

Smart Environment Automation With TextureSight, smart environments could better assist users with tasks
after acquiring their activity information, enabling applications of context-aware computing (Figure 13). For
example, speakers in the room could be muted once TextureSight detects a user’s grasp of a presentation remote
as a strong indication of someone giving a presentation. Similarly, in a home environment, lights could be
automatically dimmed once TextureSight detects a user’s grasp of a pillow. The smart ring can automatically
adjust living atmospheres such as light and temperature based on the behavior and state of the users as perceived
by the ring.

In-Situ Work Assistance Hand tools are often made of di�erent materials or the same materials with di�erent
colors and surface textures (Figure 14). TextureSight could detect which tool is currently being used by the user
to allow smart devices, such as a smart speaker, to provide in-situ instructions for training purposes, or in DIY
projects, like the furniture assembly example shown here. Speci�cally, TextureSight loads the model for tool
recognition once the user touches the surface of the furniture piece. It could recommend to the user the right
tool for the task (e.g., drilling a screw into wood with a hand drill instead of a screwdriver).
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Fig. 14. TextureSight provides pinpoint instructions in-situ, loading tool set and instructions once the surface of furniture is
detected (A), alerting the user of misuse of tool (B,C,D).

Fig. 15. TextureSight could load application-specific models (texture sets) for improved performance and eliminate the need
for collecting personal data. In this field trip example, publicly available models of common plants and their parts could be
readily loaded and used for educational purposes.

Plant Recognition for Education Textures on plant leaves are unique features that could play an important
role in plant classi�cation. With the support of the huge plant database, TextureSight could record and recognize
leaves, then educate its users about the plants. We created a simpli�ed demonstration of this use case (Figure 15).
A student on a �eld trip could use TextureSight as an always-available sensor and intelligent tutor to recognize
plants for educational purposes.

Fig. 16. TextureSight enables texture-based information to be encoded into tags that are visually similar for identification
purposes.

Texture-based ID Tags Beyond detecting textures as passive features on object surfaces, we could also explicitly
assign them ID tags as a way of encoding information. As a demonstration of feasibility, we used white tapes
commonly found on the market as proof-of-concept texture ID tags (Figure 16). These pieces of tape look visually
similar but are of di�erent textures, allowing a user to assign IDs to di�erent objects. These texture-based ID
tags could be used to facilitate the recognition of textureless surfaces or to disambiguate objects of identical
surface textures. Additionally, they allow users to explicitly tag objects of interest to facilitate smart environment
applications.

Authentication The smart ring in which TextureSight resides could function as a key in authentication applica-
tions (Figure 17). In this smart lock example, TextureSight could authenticate its user (i.e., unlock the door) once
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Fig. 17. TextureSight turns a smart ring into keys in authentication applications by detecting its contact with locks with
unique textures.

(a) (b)

Fig. 18. (a) Speckle clusters of 20 objects in the user study. (b) Top: the speckle images collected when the user touched
di�erent objects without labeling; Bo�om: The illustration for newly collected speckle data clustering process (A ! B) and
the one-shot labeling process (C! F).

it detects its user’s grasp on the handle of the smart lock, with the smart lock knowing that TextureSight is worn
on its user’s �nger. Such an interaction scenario is akin to authentication enabled by NFC but it exists without
the need for the underlying wireless communication transceivers which could be expensive and incompatible
with metal surfaces.

"Few-Shot" Experience Through Unsupervised Clustering TextureSight could already recognize a wide
array of textures "out of box" without the need for collecting personal data. Even for collecting personal data, our
work is compatible with the unsupervised clustering technique inspired by prior work (e.g., Wu et al. [61]) to
lower the e�ort of user labeling. As discussed previously, we employed a pre-trained ResNet50 model to extract
features on speckle images collected from 20 di�erent surfaces that appeared in the user study, then mapped the
extracted features from high dimension to a plane through a nonlinear dimensionality reduction method. Figure18
shows the cluster results among 20 objects and demonstrates the separability of speckle patterns acquired from
diverse textures. This observation indicates that it is possible to cluster the unlabelled speckle images based on
the features extracted by a pre-trained model, then label each cluster simultaneously at a later date, lowering
user burden in labeling.

Returning to our previous kitchen example (Figure 18), TextureSight could cluster data points from unseen surfaces
�rst using deep learning featurization and t-distributed stochastic neighbor embedding from seen surfaces, then

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 184. Publication date: December 2023.



184:22 • Wang and Yang.

wait for the user to label these data points later, after clusters are formed. This labeling only needs to be done
once for each cluster.

8 DISCUSSIONS
8.1 Establishment of Dataset
One limitation of our technique comes with the assumption that an object correlates with one or several speci�c
textures. This assumption would require the establishment of a personal dataset. We acknowledge that building a
personalized dataset is an interaction overhead that might undermine the practicality of any sensing technique.
However, many textures are universally unique to their objects and thus could be trained in the factory to enable
“out of box” uses. Such textures can be found on surfaces of common everyday objects such as fruits, vegetables,
and plants. Additionally, we could explicitly assign textures to objects in a labeling process by attaching stickers
with textures our proposed technique could have been trained in the factory.

For establishing a personalized dataset, prior work has shown a promising technique to minimize user labor
in labeling. A self-supervised clustering algorithm was designed [61] to cluster unlabelled speckle images
cumulatively before asking users for labeling (once, and for all speckle images). As we show in the example
use cases (Section 7), we clustered data points from unseen surfaces �rst using deep learning featurization and
t-distributed stochastic neighbor embedding from seen surfaces, then waited for the user to label these data
points later, after clusters are formed. Figure 18 shows the clusters of unlabeled data points. This labeling only
needs to be done once (see also the Video Figure).

8.2 Power Consumption
Low power consumption is one of the keys to the success of wearable sensing.We investigated power consumption
spent on the sensing without the system power consumption overhead. Our sensor consumes energy mostly
for two main parts: 1) the two laser diodes, and 2) the CCD sensor. The neglected power consumption includes
chip-to-chip communications (e.g., from co-processor to MCU) and the power regulations (for laser diodes and
the CCD module). Despite the already-low power consumption of our laser diodes, it can be even lower with
custom laser diodes that output only narrow laser beams. The output power of our green laser is 1 mW with an
output aperture equal to 4.3 mm and the red laser is 1 mW with an output aperture equal to 3 mm. Considering
the conversion e�ciencies of these two lasers after masking the beams with 0.3mm holes, according to their
datasheets and assuming the linear relationship between the power consumption and enlightened area, the
estimated aforementioned output powers translates to 0.005 mW and 0.01 mW energy consumption for the
hypothetical custom laser diodes, respectively.

The 640x480 CCD module consumes ~100mW and we suspect it can be lower with potentially lower duty cycles
enabled by low-power touch segmentation techniques (e.g., laser proximity sensors) that turn on the CCD module
only at touch events. Additionally, we only used 224x224 pixels on the 640x480 CCD. In theory, a custom-made
CCD of TextureSight could consume only 16.33mW or even less, assuming a linear relationship between the
number of pixels and the power consumption of CCD and with its power supply piggybacking on existing power
rails of wearables. Note that we omit communication (e.g., inter-chip comm.) and computing for their high-energy
e�ciencies within commercial products. The hypothetical low-end power consumption of main components (one
CCD and two lasers) in our sensing approach is 16.35 mW, corresponding to 5.7 hours of continuous operation
on a 22 mAh Li-Po battery (assuming a 4.2V supply voltage), which can be found on a commercial smart ring
product 3. Although these stats show feasibility, they could be further improved with smart scheduling (e.g.,

3Oura Ring: https://support.ouraring.com/hc/en-us/articles/360025428394-Product-Safety-Use
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sense once only at the touch events – transitioning from no touch to touch) and future optimization of hardware
(e.g., use ultra-low-power CCD, or a CMOS sensor).

8.3 Miniaturization
Our current implementation is bulky without much e�ort in miniaturization. The heat sinks of the lasers we used
take up ~65.3% of the size of our ring prototype and can be eliminated for the low-power and low-duty-cycle
nature of our proposed sensing approach in commercialization. Better ergonomics should and can be achieved
with custom surface-mount laser diodes and an integrated PCB with all the components built in. Though we
suspect that the sensing performance will not become signi�cantly higher because of the improved ergonomics,
improvements along this line could improve comfort, especially for long-term use. Furthermore, our sensor
requires a cavity inside the capsule for the incident and re�ected laser beams. Though small, this cavity might
take up valuable space on wearables that could have been preserved for batteries.

8.4 Framerate
We have also experimented with a simultaneous laser illumination approach, hoping to achieve a higher framerate
by extracting laser speckle images induced by the green and red lasers from the corresponding channels of the
RGB image. We used the 20 objects in the main study and followed the same procedure but with two di�erent
laser illumination approaches. We invited one participant to this experiment. The average accuracy was 93.48%
when the green and red lasers were switched on and o� alternately. This accuracy dropped to 88.92% with
the simultaneous laser illumination approach due to the imperfection of the green and red �lters on the CCD
sensor – the green laser could induce a charge on red pixels and vice versa, resulting in interference and thus
the degradation of information revealed by the two lasers. This result shows promise nonetheless, and thus we
expect CCD modules of higher build quality and �lter performance to resolve this interference issue and yield a
higher framerate.

8.5 Alternative Form Factor
Our main study showed a relatively modest performance on objects with curved surfaces due to the limitation that
comes with the rigidity of the ring prototype, especially the capsule part for introducing variances in distance and
thus producing signals that are more challenging to infer. We hope to address this limitation with �exible form
factors that could comply with the curvature of surfaces. Additionally, we suspect that wearable laser speckle
imaging could be useful in potentially acquiring contextual information on a wide array of instrumentation
locations including headsets, garments, smartwatches, and shoes, due to its advantages of being accurate, free of
a camera lens, and potentially low in power.

8.6 Privacy Concerns for Smart Ring
The wearable smart ring equipped with only a CCD sensor without lens presents an intriguing solution to address
privacy concerns related to traditional vision-based wearable devices. By eliminating lenses, our smart rings
could only image laser speckles, which are induced by laser beams that are always in focus while not being
capable of imaging the background from the ambient illumination, ensuring that no real images or visual data
that might contain privacy-sensitive information are collected even if our smart ring is accidentally activated in
the air. Furthermore, no images are captured when the lasers are deactivated or when potential external sensors
detect no contact, which further reduces the duty cycle of imaging and protects user privacy.
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8.7 Safety Concerns of Lasers
We selected low-power laser diodes with an output power of less than 1mW, which poses minimal risk to the
human eyes and skin and adheres to Class II laser safety classi�cation [18]. In summary, while direct eye exposure
to Class II lasers should be avoided, they are relatively safe because the human blink re�ex (aversion response) to
bright light typically limits the exposure to a safe duration. Additionally, the mask lasers we put in front of these
diodes further enhance safety – the less-than-1mW beams are masked with a 0.3mm layer of light-proof paper,
preventing excess direction exposure to the laser light outside the device. Finally, activation of the laser diodes is
synchronized with the imager, which further reduces the duty cycle and thus the output power of the lasers to
improve the safety of use.

9 CONCLUSION
We proposed TextureSight, a wearable laser speckle imaging sensor that recognizes objects based on their textures.
Our sensor worked best for objects which are routine to a user and among which correlations between textures
and objects are strong. We conducted an experience-sampling study to investigate the unicity and repeatability
of object-texture combinations. Theoretical models were created and validated with simulations to ground our
sensing principle. We implemented a ring prototype with two lasers and a bare CCD imager. State-of-the-art
Deep Neural Net techniques were used to power the inference pipeline. We demonstrated an accuracy of 88.2%
across 20 objects and conducted a series of supplementary studies to tease out our sensor’s performance envelope.
We believe our system uniquely demonstrates the potential of wearable laser speckle imaging in detecting routine
objects, and it could lead to practical sensing solutions which are much needed in today’s wearable devices.
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