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Figure 1: LaserShoes is a ground surface detection system based on wearable laser speckle imaging. (a) The hardware of 
LaserShoes, which consists of two major components: 1) a detecting component, which consists of a laser emitter and an image 
sensor and is set on shoes; and 2) a processing and assistant component, which mainly consists of a Raspberry Pi. The processing 
and assistant component is attached to a user’s lower leg; (b) To detect ground surfaces, LaserShoes recognizes patterns exhibited 
by laser speckles induced on diferent ground surfaces. (c) One example application of LaserShoes is personal running assistant. 
LaserShoes can identify ground surfaces on which the user is running and log this information for running analysis. 

ABSTRACT and thus could contain rich context information for smart wear-
ables. Ground surface detection could power a wide array of appli-Ground surfaces are often carefully designed and engineered with 
cations including activity recognition, mobile health, and context-various textures to ft the functionalities of human environments 
aware computing, and potentially provide an additional channel ∗The frst and second authors contributed equally to the paper. 
of information for many existing kinesiology approaches such as †Corresponding author: Guanyun Wang, guanyun@zju.edu.cn. 
gait analysis. To facilitate the detection of ground surfaces, we 
present LaserShoes, a texture-sensing-enabled system using laser 
speckle imaging that can be retroftted to shoes. Our system cap-
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1 INTRODUCTION 
Human environments contain rich contextual information that 
could be used to power a variety of context-aware computing appli-
cations. Users’ presence in a kitchen, for example, often indicates 
food preparation activities, whereas classrooms indicate learning 
and theaters indicate entertainment. As a result, accurate and ro-
bust sensing of user presence in environments with varying func-
tionalities has long been desired in HCI [1, 70, 71]. Additionally, 
fne-grained information on user location could also facilitate con-
ventional sensor-aided approaches such as gait analysis [14, 30], 
activity logging [26], and beyond for medical research and many 
more in-the-wild studies. 

In this research, we create a wearable system to recognize ground 
surfaces, which are a universal and expressive feature of human en-
vironments and often are strong indicators of user contexts. Surface 
texture, as a distinguishing feature of any ground surface defned 
by four characteristics including lay, faw, roughness, and waviness 
[43], has recently received tons of attention in the sensing research 
feld. For example, texture-based ground surface detection has been 
widely used in applications of robotics, such as assisting mobile 
robots in detecting obstacles [73] and promoting autonomous agri-
culture [42]. 

As we lay barefoot on ground surfaces, we feel the soft grass 
of a lawn, lumpy fabrics on a carpet, gritty soil of a hiking trail, 
smooth tiles of a bathroom, grainy wood of a foor, and rough sands 
on a beach. We believe that wearable intelligence could beneft 
from enhanced perceptual capabilities of sensing ground surfaces, 
similar to what humans can do but without limitations in sensitivity, 
granularity, latency, and time of operation, in order to achieve a 
better understanding of environments and user contexts, and to 
provide assistance, accommodate for natural interactions, and log 
important patterns in information for analysis and diagnosis. 

As users’ feet are almost always in contact with ground surfaces, 
shoe-instrumented wearables serve as an ideal platform for sensing 
ground surfaces. To enable shoe wearables to sense ground sur-
faces, we propose LaserShoes, a low-cost ground surface detection 
system using the laser speckle imaging technique (Fig. 1). In com-
parison with conventional vision-based approaches taking RGB 
photos of ground surfaces, laser speckle imaging reveals richer 
and more accurate information about textures of ground surfaces 
using an active signal – laser beams. When compared to cameras,
laser speckle imaging can distinguish surface textures that appear 

visually similar. Additionally, unlike conventional imaging systems 
which require lenses, laser speckle imaging does not require a lens 
and thus cannot provide clear visuals of users’ backgrounds to 
preserve privacy. 

Our system mainly consists of a laser emitter, an image sensor 
(CCD), and a Raspberry Pi board. The laser emitter and the image 
sensor are connected to shoes to capture videos of speckle patterns 
that refect surface textures. The Raspberry Pi board is instrumented 
to a user’s lower leg and runs the detection pipeline which features 
a pre-processing phase to eliminate blurry images, and a deep 
learning model to acquire ground surface types. The entire system 
costs $136. We recruited 15 participants in a user study where they 
were asked to walk on 24 ground surfaces for 1~2 minutes. In total, 
we collected 28,492 1.5s video sessions. We validated our system 
under within-user and cross-user conditions, and the classifcation 
accuracy of within-user and cross-user conditions is 86.93% and 
80.57%, respectively. We also carried out three additional studies to 
tease out the performance of our system in detecting dry, wet, and 
frozen surfaces, and sand surfaces of diferent grain sizes, and under 
various lighting conditions. Finally, we demonstrated applications 
enabled by our system, such as personal running assistant, gait 
analysis, surface-aware cleaning equipment, coarse navigation, and 
daily activity recognition through localization. 

In summary, our main contributions include: 
• We designed and implemented LaserShoes, a laser-imaging-
based ground surface detection wearable system that can 
identify ground surfaces. 

• We designed a data process method for LaserShoes to identify 
relative stationary frames from collected videos and com-
pleted an end-to-end real-time inference pipeline based on 
contemporary deep learning techniques. 

• We conducted an evaluation with 15 participants to inves-
tigate the performance of LaserShoes with two validation 
mechanisms (i.e., within- and cross-user), and under various 
surface and environmental conditions. 

2 RELATED WORK 

2.1 Sensing Ground Surface with Smart Shoes 
With the rise of ubiquitous computing, various smart shoes are 
designed and developed for sensing ground surfaces and accommo-
dating novel interaction modalities [62, 67]. Taking advantage of 
their unique position, and linking the foot with ground surfaces, 
smart shoes can often yield information beyond what is possible 
through wearables at other body locations. 

Prior work has demonstrated ground surface identifcation using 
foot kinematics, which could be used for danger alerts and human 
activity recognition. Specifcally, Otis et al. [37] used a variety of 
sensors, including accelerometers, gyroscopes, and force sensors, 
to distinguish between the physical properties of diferent soils. 
Cheng et al. [8] designed wearable capacitive sensors and applied 
them around users’ ankles to recognize whether users were walking 
on concrete or in the meadow. Furthermore, Matthies et al. [31] 
designed CapSoles leveraging the capacitive ground coupling efect 
to detect six diferent ground surfaces. Zrenner et al. [75] revealed 
the relationship between foot kinematics and ground surfaces with 
diferent properties using inertial measurement units (IMU). Strada 
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et al. [50] used gait data collected by inertial sensors embedded in 
the shoes’ soles to identify surface types and conducted experiments 
on four diferent ground surfaces. However, foot kinematics can be 
largely afected by the user’s intrinsic walking characteristics [31] 
and health conditions [41]. In contrast, LaserShoes uses laser speckle 
imaging to recognize ground surfaces of diferent textures, which 
is immune to diferences in gait, and has been evaluated on 24 
diferent ground surfaces and demonstrated robustness under a 
variety of environmental conditions. 

2.2 Surface Texture Detection Techniques 
Surface texture is a complex condition resulting from a combina-
tion of roughness (nano and micro-roughness), waviness (macro-
roughness), and lay and faw [43]. Surface texture recognition has 
been widely used in various application domains [2, 6, 35, 49]. Con-
ventional approaches to texture recognition include microscopes 
and roughness meters which are expensive and often stationary, 
making them difcult to be instrumented on a user’s body as wear-
able devices. It is also possible to use tactile sensors with a portable 
form factor to identify surface textures [12, 38, 57, 60, 66]. These tac-
tile sensors can augment the sensation of touch and assist surface 
texture recognition. 

Closer to our system, several prior works have investigated op-
tical approaches for surface texture recognition. For example, Su 
et al. [53] acquired subsurface scattering characteristics measured 
by time-of-fight (ToF) cameras to identify surface texture features. 
Researchers also combined a multi-spectral light source and an 
image sensor to recognize surface textures [20, 65]. These tech-
niques, however, often rely on complex devices or multiple light 
sources, which are expensive to scale. In this research, we chose 
laser speckle imaging, a relatively low-cost approach consisting 
of mainly a laser and an image sensor, to capture surface texture 
features at high fdelity. We furthered this sensing approach into 
an end-to-end system and evaluated it with realistic surface and 
environmental conditions. 

2.3 Laser Speckle Imaging 
LaserShoes is closely related to prior works on Laser speckle imag-
ing [19], which is a technique that uses an image sensor to obtain 
patterns in laser speckle images corresponding to surface textures 
when a beam of coherent light, such as a laser, illuminates the sur-
face. This method has been used in a variety of felds. In the medical 
feld, for example, it is used to monitor capillary perfusion in human 
skin tissues and brain blood fow maps in rodents [10, 11, 16]. In 
HCI, Laser Speckle Imaging has been used to recognize appliance 
use and home activities [54, 72] to achieve motion sensing and 
motion tracking [36, 48, 74]. And a non-contact force sensing can 
also be achieved by applying Laser Speckle Imaging to manifest sur-
face deformation which is corresponded to force [40]. Furthermore, 
Laser Speckle Imaging techniques can be used to expose surface 
characteristics for surface material identifcation. SpecTrans [45] 
leverages Laser Speckle Imaging in conjunction with multi-spectral 
LED illumination to classify textureless, specular, and transparent 
materials for interactivity. Laser Speckle Imaging is highly sensitive 
and can even reveal small composition diferences of materials that 
appear identical to human eyes. SensiCut [13], for example, applies 

this technique on a laser cutting machine to identify the pending 
materials before cutting, to improve its safety and workfow. 

Our work leveraged this sensing approach to identify ground 
surfaces, a drastically diferent class of surfaces than the ones in the 
prior work. Our diferent application scenario comes with unique 
challenges such as the relative motion between a user’s feet and 
the ground surface. To overcome these challenges, we developed an 
end-to-end wearable system with a custom pre-processing phase to 
flter out blurry speckle images due to the motion efect, resulting 
in a robust system that we evaluated with a wide range of common 
ground surface types. 

3 PRINCIPLES OF OPERATION 
LaserShoes is based on two principles of operation: 1) we used Laser 
Speckle Imaging to detect ground surface textures, and 2) we used 
the variance of grayscale-converted frames from recorded videos 
to infer gait status and obtain speckle images with high quality. 

First, Laser Speckle Imaging can reveal surface texture charac-
teristics. When a beam of coherent light (e.g., laser) illuminates a 
ground surface, the light will be refected, and captured by a nearby 
image sensor, forming an image with laser speckles, as shown in 
Fig. 2 (a). This phenomenon occurs because ground surfaces are 
rough – the micro geometry of ground surfaces varies the optical 
paths of the laser beam. Thus, each pixel of the image sensor will 
receive the refected laser beam with diferent constructive and 
destructive interference, forming laser speckles. Because diferent 
ground surfaces have diferent micro geometries, the resulting laser 
speckle patterns vary and could be leveraged to identify ground 
surfaces. 

Second, we applied Laser Speckle Imaging with the consideration 
that a user’s feet could be in constant motion (e.g., walking and 
running) in relation to ground surfaces. The sensor’s movements 
relative to the ground manifest as the motion efect on images, 
resulting in blurry laser speckle images that have lower variances 
compared with those that have sharp speckles. As illustrated in 
Fig. 2 (b), the laser speckle images are much clearer when a user’s 
foot is in contact with the ground than when the foot is moving 
in the air. We utilized the variances of grayscale speckle images 
to identify the foot-ground contact period from recorded videos 
and used only speckle images collected from this period for the 
subsequent classifcation. 

4 HARDWARE DESIGN 
We prototype LaserShoes to investigate the capabilities of laser 
imaging in ground surface detection. Although our current imple-
mentation is relatively bulky and impractical for direct adoption, 
our end-to-end prototype enables us to efectively verify our sens-
ing principle, conduct technical evaluation, and explore potential 
applications. The form factor of our current prototype is akin to 
established works in the HCI community [7, 61, 68]. In this section, 
we introduce our hardware confgurations and fabrication. 

4.1 Embedded System 
We apply Laser Speckle Imaging to capture speckle patterns and 
recognize ground surfaces. The technique has been used in the 
HCI community and could be eye-safe [4]. To utilize this technique, 
our system consists of four parts: 1) a laser emitter, 2) an image 



CHI ’23, April 23–28, 2023, Hamburg, Germany Yan et al. 

laser image
sensor

illuminated spot

surface

coarse
brick

brightest

darkest

carpet

speckle
patterns

ceramic

light-
colored

wood

surface

blurryclear clear

brightest
darkest

+
+

=
=

a

b

c

Figure 2: Two principles of operation and speckle patterns induced by diferent ground surfaces. (a) The principle of Laser 
Speckle Imaging. The optical paths of laser beams vary due to variances of the surface micro geometry, resulting in constructive 
and destructive interference on a nearby image sensor; (b) The gait status afects the blurriness of the laser speckle images. 
When a user’s foot moves in the air, the corresponding laser speckle images are blurry, whereas when the foot comes into 
contact with the ground surface the corresponding laser speckle images are clear; (c) Ground surfaces and the induced laser 
speckles. The speckle images measure 256 × 256 pixels. 
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Figure 3: The hardware of LaserShoes. (a) The circuit connection of electronic components; (b) Individual unit of the system, in 
which b1-b7 are electronic components, b8-10 are mechanical components for housing the Raspberry Pi and other assistant 
modules, and b11-15 are the mechanical components for housing the laser emitter and the image sensor and afxing our 
system to shoes. b1-battery module, b2-Raspberry Pi Zero 2 W, b3-connector between b2 and b4, b4-USB interface module, 
b5-switch module for the laser emitter power supply, b6-laser emitter, b7-image sensor, b8-support component between a 
user’s lower leg and the hardware, b9-square housing to cover the Raspberry Pi and assistant modules, b10-top lid of b9, 
b11-one of the semi-cubic shell of the container, b12-fxture for the laser emitter, b13-another semi-cubic shells of the container, 
b14-cylindrical housing that connect the container and the clamping part, b15-clamping part that attaches this structure set to 
shoes with a series of holes for adjusting the angle of the container to it using b14; (c) LaserShoes worn on a user’s foot and 
lower leg with all components annotated. 

sensor, 3) a Raspberry Pi board, and 4) assistant modules. The laser 
emitter and the image sensor compose the detecting component, 
while other parts compose the processing and assistant component. 
The hardware details of our system are shown in Fig. 3. Compared 
to prior works [20, 65], the core sensors bundled in our system 
are more compact to set on shoes. The enclosure of the system is 
3D printed using photosensitive resin. The entire system and its 
manufacturing cost are $135.23, and the combined cost of the laser 
emitter and image sensor is $23.14. The cost of each component is 
shown in Table 1. 

Laser Emitter. We select a laser emitter with a 520nm wavelength 
and 5mW output power based on our confguration experiments
(see Section 4.2.2). Given that using a low-power laser emitter will 

result in insufcient illumination and unclear speckle patterns, and 
that using a high-power laser may not be eye-safe, we ultimately 
choose a 5�� laser (Class IIIA) which is chronic viewing hazard 
but safe for transient exposures. Additionally, in order to have 
maximum laser refection to preserve signal-to-noise ratio (SNR), 
we set the laser emitter vertical to ground surfaces. 

Image Sensor. Given that our system is mounted on users’ shoes, 
it is subject to movement as users walk, leading to the loss of speckle 
information in parts of the image due to motion blur. To extract 
images with clear speckle patterns from captured videos, we select 
an OV2710 image sensor with a relatively high frame rate of 60 
fps. We set the resolution of the image sensor as 1280 × 720 pixels, 
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Table 1: Costs of main components of LaserShoes. 

Module Laser Emitter Image Sensor Switch Module Raspberry Pi Board with USB interface board Battery Module Fabrication 

Price ($) 7.00 16.14 0.52 76.86 17.57 17.14 

which is the highest resolution under the 60-fps frame rate. It is 
worth noting that our system does not use a lens because laser 
beams refected by ground surfaces are always in focus, resulting 
in sharp speckle patterns that are distributed uniformly across the 
captured images when a user’s shoe is relatively still with respect 
to ground surfaces. To further improve SNR, the image sensor is 
placed right next to the laser emitter. 

Raspberry Pi Board and Assistant Modules. For image acquisi-
tion and processing, we choose the Raspberry Pi Zero 2 W, for its 
compact size, superior speed, and wireless connectivity. With the 
connected laser emitter and image sensor, the Raspberry Pi board 
carries out three functions: 1) supplying power to the laser emitter 
from GPIO, 2) acquiring videos from the image sensor through a 
USB interface and 3) processing acquired videos and yielding the 
detected type of ground surface to users. The assistant modules 
include a battery module, a USB interface module, and a switch 
module to safely supply power to the entire system. 

4.2 Confgurations 
In order to identify the optimal confguration of our system, we 
conducted experiments using various combinations of laser wave-
lengths and distances, as they are two signifcant factors afecting 
the formation of laser speckles, and investigated their performance 
in surface classifcation. In these experiments, we used an image 
sensor which was a model commonly used on webcams with a pixel 
size of 3�� × 3��. 

4.2.1 Image sensor. Given that our system operates in a moving 
scenario, an image sensor with a sufcient frame rate is required to 
ensure the quality of captured videos and to extract clear speckle 
patterns from those videos. Through experiments in which we 
collected videos while researchers with the camera confgured at 
diferent frame rates were walking at their normal speed, we dis-
covered that the standard 30-fps frame rate is insufcient due to the 
motion efect, resulting in an excessive number of blurry images. 
On the other end, sensors with higher frame rates are often costly, 
which contradicts our design goal of being low-cost. As a result, 
we choose a frame rate of 60 and rely on a custom pre-processing 
pipeline to mitigate the motion blur (see in Section 5.1). 

4.2.2 Wavelength and distance. Since infrared lasers are difcult 
to debug, we selected wavelengths of laser in the visible spectrum. 
Specially, in our experiments, we investigated 4 diferent represen-
tative laser wavelengths (405��, 450��, 520��, and 650��). In 
terms of distance, considering that our system is intended to be 
fxed on shoes, which often hold a relatively short distance with 
ground surfaces, we kept the distance as short as possible while 
maintaining sufcient clearance for the light path (i.e., from the 
emitter to ground surfaces and back to the image sensor). Thus, 
in this case, for each wavelength, we investigated its performance 

at distances with the ground surfaces of 1��, 3��, 5��, 7��, 9��, 
11��, 13�� and 15�� (Fig. 4). 

For each wavelength-and-distance combination, we collected a 
number of images with speckle patterns on fve surfaces (wood, 
fabric, concrete, rubber, and ceramic). During the collection, we 
manually swapped the laser emitter of diferent wavelengths and 
adjusted the sensor distance to the ground surface. In order to 
evaluate the qualities of these images, we conducted a quick val-
idation using ResNet-18 [21], with collected images split into a 
training set and a testing set. Our assumption is that laser speckle 
images with high-quality speckle patterns will yield relatively high 
classifcation accuracy, revealing optimal wavelength-and-distance 
combinations. 

The average classifcation accuracies and their standard devia-
tions of all wavelength-and-distance combinations are shown in 
Appendix A. Results indicate that the green laser (520��) exhibits 
both high accuracy and stability, though almost all combinations 
reach high classifcation accuracies. When the distance is under 
11��, the accuracies of the green laser are all above 98%. Thus, in 
our subsequent studies, we choose the green laser with a 520�� 
wavelength and set the distance between the sensor and ground 
surfaces to under 11�� when afxing the sensor to users’ shoes. 

4.3 Mechanical Structure and Fabrication 
We build a mechanical structure of two modules that can achieve 
angle adjustment of the detecting component to ground surfaces 
and the fxation of the system on a user’s leg (Fig. 3). The frst mod-
ule consists of fve parts: two semi-cubic shells forming a container 
(b11, b13), a limiter with two cylindrical channels (b12), a cylindrical 
housing (b14), and a clamping part (b15). The two semi-cubic shell 
surfaces are joined together into a cube container by screws on the 
side. The image sensor is fxed inside the cube housing via slots in 
the four corners of the cube container’s inner side, and the laser is 
fxed on the bottom side of the cube housing via a fxture (b12). A 
number of rivet structures are used to connect the cube container 
to the column housing b14, and to implement the rotatable con-
nection between the column housing b14 and the clamping part 
(b15). Screws are used to secure a series of discontinuous holes in 
the column housing and the clamping part, allowing an adjustable 
angle between the cube container and the clamping part, ranging 
from 0 to 90 degrees in a 15-degree step. As the clamping part of the 
frst module is fxed to the outer side of a user’s ankle, adjusting the 
angle between the cube container and the clamping part changes 
the angle between the laser sensing beam with the user’s leg and 
thus with the ground surfaces. 

The second module contains four parts: a supporting part (b8), a 
square housing (b9), a top lid (b10), and a controller box (b5). Among 
these, b8, b9, and b10 are jointed by three studs on the corners to 
form a container for the combined structure of the Raspberry Pi 
board and the battery module. The container measures approxi-
mately 65.7�� in length, 30.6�� in width, and 46.0�� in height. 
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Figure 4: 32 wavelength-and-distance combinations that we selected and the corresponding sample speckle imaging data of 
each wavelength-and-distance combination. We selected four diferent wavelengths of 405��, 450��, 520�� and 650�� and 
eight diferent distances of 1��, 3��, 5��, 7��, 9��, 11��, 13�� and 15��. When collecting data, we adjusted the wavelength by 
swapping laser emitters manually. 

The USB port and the charging port are reserved for the exterior of 
the container. The controller box (b5) contains the switch module 
and is attached to the rest of the module with a side slide. This 
module is fxed to the outside of the user’s lower leg with straps 
ftting through b8 and the main structure of the container is kept 
away from the user’s skin to avoid possible discomfort due to the 
heat dissipation of our system. The above mechanical structures 
are 3D printed with photosensitive resin at a 0.05 mm resolution 
using a Lite600HD 3D printer. 

5 GROUND SURFACE DETECTION 
The whole ground surface detection pipeline of LaserShoes is il-
lustrated in Fig. 5. LaserShoes device is expected to work despite 
the constant motion with ground surfaces while users are walking. 
Every 90 frames are treated as a video session, taking about 1.5 
seconds to collect. This duration is selected for our observation that 
at least one foot-ground contact would appear in the video session 
when users walk at normal speeds. 

Video sessions are fed into our ground surface detection system, 
which consists of a pre-processing phase and a deep learning model 
for classifcation. Specifcally, with this pre-processing phase, we 
select images with clear speckle patterns from the collected videos 
and crop selected speckle images into small images before feed-
ing them into a deep learning model for classifcation, as a data 
enhancement technique to increase our data collection efciency. 
This pre-processing phase allows LaserShoes to deal with distance 
change and motion blur caused by users’ gait. 

5.1 Data Pre-processing 
The motion of users’ feet causes the speckle patterns to be blurry 
and thus contain little information on ground surfaces (Fig. 2 (b)). 
To achieve high detection accuracy, it is necessary to extract high-
quality images with clear speckle patterns. Our pre-processing 
phase contains four stages (Fig. 5 (b)-(e)), including 1) identifying 
the foot-ground contact periods, 2) cropping images, 3) removing 
partial blurry images, and 4) removing fuzzy patterns. Specifcally, 
we frst identify images collected from foot-ground contact periods. 
We then crop these foot-ground contact images into small images
with the size of 256 × 256. We discard cropped images with partial 

blur or fuzzy patterns. After the pre-processing phase, we obtain a 
group of cropped images with clear speckle patterns to feed into 
our deep-learning model. The details of each stage of this pre-
processing phase are explained below, and the efcacy of the data 
pre-processing is discussed in Section 8.1. 

Algorithm 1: Identifying Foot-Ground Contact Period 

Input: The image list ������ , the variance threshold �ℎ���� 
from the last session. 

Output: The list of foot-ground contact images ���� . 
for � in range ���(������) do 

Calculate the variance of ������� and save it in list 
������ ; 

for � in range ���(� �����) do 
if i = 0 or i = ���(� �����) − 1 then 

Continue; 
if � ������ >= �ℎ���� and � ������ −1 >= �ℎ���� and 
�������+1 >= �ℎ���� then 

Center-crop ������� and save it in ���� ; 

Calculate the top 8% variance value in list � ����� and use it 
to update �ℎ���� ; 

Result: ���� 

5.1.1 Identifying foot-ground contact periods with variance-based 
threshold. We observe that the distribution of bright and dark re-
gions in speckle images contains the majority of information about 
ground surfaces, and that color is not a signifcant factor. Therefore, 
to increase the efciency of our pre-processing phase, we convert 
all speckle images to grayscale. 

The frst step, after acquiring the grayscale frames, is to identify 
speckle images that correspond to the foot-ground contact period. 
These images are often less blurry, revealing much information 
about ground surfaces. We note that, when LaserShoes is moving in 
relation to the ground, the collected speckle images are less visible, 
resulting in lower variances of pixel intensities across an image 
for the edge of the speckle patterns being fuzzy. Fig. 6 shows some 
example speckle images from the foot-ground contact period and 
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Figure 5: The pipeline of ground surface detection. (a) The overview of this pipeline: all frames of the collected video are 
converted into grayscale and fed into a pre-processing phase, which identifes a set of images with distinct speckle patterns, 
which will then be fed into a ResNet-18 model to determine the type of ground surface; (b)-(e) Four main stages of the pre-
processing phase; (b) We select speckle images with pixel variances higher than a threshold. These images (i.e., foot-ground 
contact images) are often captured when the user’s foot has solid contact with ground surfaces. Images with low variances are 
discarded; (c) We crop the foot-ground contact images along the leftmost column and threshold the variance of cropped images. 
If the cropped image has a higher-than-threshold variance, the entire row of the foot-ground contact images which has the 
cropped image is preserved for the next steps. Rows with cropped images of lower-than-threshold variances are discarded. 
Then we slice the preserved rows of the foot-ground contact images to get multiple candidate images which are enhanced for 
better contrast by histogram equalization; (d) We divide one candidate image into four regions and calculate the sum of each 
part. If the diference between any two sums is smaller than the threshold �ℎ�� � � �� 1, the candidate image will be considered not 
blurry and passed to the fnal selection stage; (e) Finally, we apply 8 Gabor flters with various angles to candidate images and 
calculate the sum of each result. If all the sums are larger than the threshold �ℎ��� and diferences of any two sums are all 
smaller than another threshold �ℎ�� � � �� 2, the candidate image is clear and ready for the subsequent detection. In other words, 
these clear candidate images are outputs of this pre-processing phase. 

from a user’s foot in motion, illustrating the diference in blurriness. CCD module, not being able to output clear laser speckles. The 
Hence, by comparing the variances of pixels, we identify speckle pseudo-code of this pre-processing stage is shown in Algorithm 1. 
images that are collected from the foot-ground contact period and 

5.1.2 Cropping images. The frst stage yields foot-ground contact pass them to the next stage. images of 1024×592 pixels. We conduct a test to investigate the We calculate the grayscale variance of each speckle image in efect of image size on the detection performance in Section 5.3, each video session. Then, for each speckle image, we recognize it as and choose 256×256 pixels as the size of our input data. Specifcally, one collected from the foot-ground contact period if it has a cross- we use an extraction window of that size to crop out input images pixel variance that is larger than the top 8% variance value of the from each foot-ground contact image. This cropping operation also previous 90-frame video segment. To further improve robustness, increases the number of samples and improves the efciency of we use adjacent images to aid in identifcation – we consider a deep learning model training. speckle image to be a foot-ground contact image only when both However, within each foot-ground contact image, some regions its previous frame and next frame have high variance. Finally, before may still be blurry while others have clear speckle patterns. We feeding these selected images into the next stage, we conduct a eliminate those with blurry speckle patterns in this stage to further center crop on them for the lack of sensitivity at the edges of the 
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Algorithm 2: Cropping Images 
Input: The list of foot-ground contact images ���� , the 

number of cropped images along the height 
dimension ���ℎ and the number of cropped images 
along the width dimension ���� . 

Output: The list of candidate images ����� . 
for � in range ���(����) do 

for � in range ���ℎ do 
Crop the images along height dimension at height 
index � ; 
Save the variances of the cropped images in list 
�� ����� ; 

Calculate the top 20% of the values in variance list �� ����� 
as the threshold �ℎ���� ; 
for � in range ���(�� �����) do 

if �� ������ > �ℎ���� then 
Calculate the corresponding image index ���� and 
cropped image height index ���ℎ ; 

for � in range ���� do 
Use the height index ���ℎ and the width index � 
to crop the image ����� and get �������; 

������� = HistogramEqualization(�������); 
Save ������� in the list ����� ; 

Result: ����� 
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Figure 6: The grayscale variances of all images in one col-
lected video. Images with small variances are motion images 
that own no speckle patterns but blur while images with 
large variances correspond to foot-ground contact periods 
and own speckle patterns. In some foot-ground contact im-
ages, some parts own blurry speckle patterns while others 
own clear ones. And the distribution of speckle patterns is 
often similar along the image width direction which aligns 
with the foot breadth direction. 

improve our system’s robustness. Instead of using the intuitive 
approach to calculating pixel variance of all cropped images, which 
could be computationally expensive, we calculate the variances of 
the cropped images along the left edge of a foot-ground contact 
image to decide the blurriness of rows in these cropped images 
reside. We note that the distributions of speckle patterns in each 
image row are often similar to the rolling shutter of our image 

sensor (Fig. 6). Thus, we can determine if a row has clear speckle 
patterns by inspecting only one section of it. Specifcally, we slide 
the extraction window in the y direction to crop out diferent image 
patches and check whether they are clear by thresholding their 
pixel variances (Fig. 5). The slide stride is 56 pixels, and thus for each 
foot-ground contact image, six cropped images will be extracted. If 
a cropped image has a variance higher than the top 20 percent of all 
variances of all foot-ground contact images belonging to the current 
video session, we consider it to have clear speckle patterns and save 
it in a bufer. We also save the indexes of these cropped images for 
sliding the extraction window along rows of these indexes with a 
128-pixel stride. The extracted patches from this step are candidate 
images. Histogram equalization is applied to candidate images to 
amplify their contrast. All candidate images are fed into the next 
pre-processing stage after histogram equalization. Algorithm 2 
shows the pseudo-code of this stage. 

5.1.3 Removing partial blurry images with region-based sum com-
parison. There could still be blurry images resulting from the afore-
mentioned stages. To eliminate these images, we design an addi-
tional pre-processing stage for fne selection. Because the contrasts 
of these potentially blurry candidate images become much larger 
after histogram equalization, the pixel variances of diferent regions 
of these images all vary greatly (shown in Fig. 7 (a)). Thus, to iden-
tify blurry images, each candidate image is equally divided into 
four sub-images. We calculate the sum of the grayscale values of 
every sub-image and eliminate the candidate image if the diference
between any two sums exceeds a given threshold. The rest of the 
candidate images are then fed into the fnal pre-processing stage. 

5.1.4 Removing fuzzy paterns with Gabor filter. Since there may 
still be relative motions between our sensor and ground surfaces 
during the foot-ground contact period due to the deformation of 
ground surfaces, fuzzy patterns can be generated in the speckle 
images. These fuzzy patterns often appear as stripes oriented in 
a particular direction, while clear speckle images have patterns 
with no obvious orientation (as shown in Fig.7(b) and (c)). To re-
move images with fuzzy patterns, we apply 8 Gabor Filters with 
diferent directions (30, 60, 120, 150, 210, 240, 300, and 330 degrees) 
and remove those with unbalanced fltered results. Specifcally, we 
eliminate an image if there is a diference between any two fltered 
results greater than a given threshold. The candidate images that 
are not eliminated by the third and fourth stages are the output 
of our pre-processing phase and are the input to the deep learn-
ing model. The pseudo-code for these two pre-processing stages is 
described in Algorithm 3. 

5.2 Deep Learning Model 
Image classifcation is a mature feld in Computer Vision (CV), and 
many deep learning algorithms have shown remarkable perfor-
mance. To choose a proper model for our sensing, we conduct a 
comparison study with diferent models, including ResNet-18[21], 
VGG [47], GoogleNet [55], and MobileNetV3 [24]. As shown in Ta-
ble 2, ResNet-18 and GoogleNet achieve comparatively high accura-
cies. We eventually choose ResNet-18 to implement LaserShoes for 
its smaller size, despite its slightly lower accuracy than GoogleNet. 

In the ResNet model, input images frst pass through a convolu-
tion layer, a batch normalization (BN) layer, and a rectifed linear 
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Table 2: Classifcation accuracy results of diferent models 
and their model sizes. 

Model ResNet-18 VGG-16 GoogleNet MobileNetV3 

Accuracy 88.95% 79.50% 89.95% 77.88% 
Model Size 42.8M 512.6M 48.2M 6.3M 

a b c

Figure 7: Three kinds of candidate images. (a) Blurry can-
didate image; (b) Fuzzy candidate image with one-direction 
stripes; (c) Clear candidate image. 

Algorithm 3: Removing Partial Blurry Images and Fuzzy 
Patterns 
Input: The list of candidate images ����� , the threshold 

�ℎ�� � � �� 1 which is used to identify partial blurry 
images, the threshold �ℎ��� and �ℎ�� � � �� 2 which are 
used to identify fuzzy patterns and the angle list 
���� used for Gabor Filter. 

Output: The list of clear candidate images ����������� . 
for ������� in ����� do 

Divide ������� into 4 parts and calculate the sum of 
the grayscale values of every part; 

Calculate the diference between any two sums and save 
the result in the list �� � � 1��� ; 
if Every element in �� � � 1��� < �ℎ�� � � �� 1 then 

for ����� in ���� do 
��������� = ����������� (�������, �����); 
Calculate the grayscale sum of ��������� and 
save it in the list ���� ; 

if Every sum in list ���� > �ℎ��� then 
Calculate the diference between any two sum in 
list ���� and save the result in the list 
�� � � 2��� ; 
if Every element in �� � � 2��� < �ℎ�� � � �� 2 then 

Save the ������� in list ����������� ; 

Result: ����������� 

unit (ReLU) layer. The data then goes through a series of basic blocks 
which consists of a residual mapping and an identity mapping. For 
the residual mapping, the input passes through a convolution layer, 
a BN layer, a ReLU layer, another convolution layer, and another BN 
layer, while for the identity mapping, the input only passes through 
a 1×1 convolution layer to be downsampled to the same size as the 
residual mapping result. Then the two mapping results are added 
and the sum passes through a ReLU layer to get the output of a 

basic block. Finally, an average pooling and a full connection layer 
are operated to obtain the classifcation results. During training, 
we select Cross Entropy Loss as the loss function and use the Adam 
optimizer. The learning rate and the batch size are set to 0.0001 and 
32, respectively. We do not use a pre-trained model to initialize our 
parameters and use 150 epochs for the model training because we 
fnd that it is enough for our models to be converged. 

5.3 Image Size Selection 
The model’s input is the clear candidate images from the data pre-
processing phase, and the model’s output is the type of ground 
surfaces. Image size is set to 256 × 256 in our ground surface de-
tection, the same as the size used in SensiCut [13]. To verify the 
efcacy of this image size, we extract a number of clear candidate 
images with diferent sizes to train a series of ResNet-18 models. 
The experimented image sizes included 64 × 64, 128 × 128, 256 × 
256, and 512 × 512. The results of average accuracy and inference 
time for the classifcation of one input image are shown in Table 3. 
As expected, input images with larger sizes lead to higher accuracy 
but take signifcantly longer to classify. Given the improvement in 
accuracy is modest from 256 × 256 to 512 × 512, we select 256 × 
256 as the size of the input images to our model to balance accuracy 
with inference time. 

Table 3: Classifcation accuracy and inference time for one 
image with various input image sizes. 

Image Size 64 × 64 128 × 128 256 × 256 512 × 512 

Accuracy 48.33% 66.95% 88.95% 94.67% 
Inference Time 2�� 4�� 17�� 45�� 

5.4 Real-Time Inference 
In real-time detection, the image sensor continually records frames, 
and every 90 frames constitute a video session that is fed into the 
pre-processing stage. If no clear candidate images are detected by 
the pre-processing phase, the detection pipeline outputs “None” as a 
neutral label. We conduct testing using 100 video sessions captured 
during participants’ normal walks on various everyday ground 
surfaces. Our result shows that for every video session, after the data 
pre-process phase, the average number of input images fed into the 
subsequent model is 11. We use C++ for implementing the data pre-
processing for a superior speed and use Python for implementing 
the deep learning model. For every input image of a video session, 
the classifcation model will output a corresponding surface type. 
Among all these types, we choose the surface type that appears 
the most frequently as the surface label of this video session. And 
the label is also provided to the user as the detection feedback. We 
record the average time needed for completing the pre-processing 
and inference of one video session, with 100 sessions collected from 
various participants and ground surfaces processed on a Raspberry 
Pi Zero 2 W, a laptop with a CPU of 3.1 GHz dual-core Intel Core 
i5, and a GPU of NVIDIA GeForce RTX 3090 respectively. Results 
are shown in Table 4. We fnd that the current implementation 
of LaserShoes running solely on the Raspberry Pi board cannot 
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perform real-time detection without dropping input images if the 
duty cycle of users’ feet contacting ground surfaces is too high, 
which we acknowledge as a limitation of our system. 

Table 4: Data processing pipeline average run time for one 
session on various devices. 

Model Pre-processing Inference Total 

Laptop CPU 
Embedded System 

GPU 

99�� 
696�� 
75�� 

1211�� 
6082�� 
194�� 

1310�� 
6778�� 
269�� 

6 EVALUATION 
Our user study consisted of one main study and three supplemen-
tary investigations. The main study involved collecting data with 
24 ground surfaces to understand LaserShoes’ ability to classify the 
ground surface material while its wearer is walking. In the supple-
mentary studies, we aimed to evaluate the robustness of LaserShoes 
under various conditions (i.e., on dry, wet, and icy surfaces, on 
sand surfaces of diferent grain sizes, and under diferent lighting 
conditions). 

Considering that when pre-processing, identifying the foot-ground 
contact periods of a 1.5s video session is the frst stage and is the 
basis of the subsequent pre-processing stages, a high detection ac-
curacy (DA) of identifying the foot-ground contact period (FGCP) 
is necessary. Thus, we frst evaluated this detection accuracy, which 
is defned as 

# detected 1.5s video sessions containing FGCP 
DA = .

# all 1.5s video sessions containing FGCP 

Then, we used accuracy, precision, recall, and F1 score as our 
evaluation metrics for the ground surface classifcation. To calculate 
them, we only considered the 1.5s video sessions that have surface 
label (SL) output and eliminated those with “None” signals. The 
classifcation accuracy (CA) is defned as 

# correctly classifed 1.5s video sessions with SL output 
CA = .

# all 1.5s video sessions with SL output 

6.1 Main Study with 24 Ground Surface 
6.1.1 Ground surface materials. We selected a total of 24 common 
ground surfaces, comprising 15 indoor surfaces and 9 outdoor sur-
faces, for our study. These surfaces could be classifed into fve 
groups: 1) rough, 2) smooth, 3) hard, 4) discontinuous, and 5) gran-
ular. These surfaces are shown in detail in Fig. 8. For each ground 
surface, we prepared at least one continuous area of 20 square me-
ters in size to allow our participants to walk naturally (e.g., not need 
to frequently turn or turn back, not need to keep looking down the 
ground) during data collection for our study. 

6.1.2 Participants and apparatus. We recruited 15 participants (7 
males and 8 females), with ages ranging from 20 to 27 years old 
(mean = 23.40, SD = 1.56) via social media and fyers. Their body 
weights ranged from 48.0�� to 82.6�� (mean = 61.03, SD = 9.93) 
and their heights ranged from 158.5�� to 182.0�� (mean = 170.13, 
SD = 6.83). Of all the participants, 5 wore sneakers, 6 wore running
shoes, 3 wore canvas shoes, 1 wore ankle boots, and 1 wore snow 

boots. Their shoe sizes ranged from 23.0�� to 27.0��, with a mean 
of 24.67 (SD = 1.12). 

Participants wore their own shoes normally and our LaserShoes 
as described in Section 4 to collect videos from ground surfaces 
while participants were walking on them. Considering that our 
device requires proximity to ground surfaces, we required partic-
ipants to wear fat shoes. Fig. 9 shows some example shoe styles 
that LaserShoes is compatible with. Distances between our image 
sensor and ground surfaces in the study varied from 6cm to 10cm 
across the 15 participants. The detection component was attached 
tightly to participants’ shoes through our designed clamping mech-
anism, while the processing and assistant component was attached 
to participants’ lower legs using Nylon tapes. 

6.1.3 Data collection procedure. We started the study with an in-
troduction of the procedure and helped the participant put the 
devices on. For each surface, we used tapes to indicate an area that 
the participants could walk on. Participants were allowed to walk 
freely in the area. Each study had two sessions. A short practice 
session was at the start, where the participant walked through all 
surfaces. This session was used to familiarize participants with 
the system and no data was collected. We asked the participant to 
slow down their walk if no clear speckle patterns could be captured 
by LaserShoes (i.e., output from the pre-processing phase). After 
the practice session, the participants were asked to walk on each 
chosen surface for 1~2 minutes in the second session for data col-
lection. The order of the surfaces each participant needed to walk 
on was randomized to avoid bias (e.g., a change in walking speed 
or gait caused by fatigue). In addition, in order to simulate real-
world scenarios, participants were asked to adjust their LaserShoes 
after each session and to take breaks in between sessions (around 2 
mins). The study was conducted under typical indoor and outdoor 
lighting conditions. To collect the ground truth of foot-ground con-
tact periods, a camera was set up to record the foot movements 
of participants during the study and research assistants labeled all 
foot-ground contact timestamps manually. In total, we collected 
28,492 1.5s video sessions on 24 surfaces from the 15 participants. 
And it took around 2 hours for each participant to fnish the data 
collection. 

6.1.4 Results. To evaluate the performance of our system for ground 
surface classifcation, we used both within-user and cross-user ap-
proaches. For within-user evaluation, to ensure there is no over-
lapping between the training set and the test set, we frst split all 
data into ten folders and randomly selected two folders as the test 
datasets. Of note that no time-adjacent input images were included 
in both training or test datasets. For cross-user evaluation, we used 
leave-one-out evaluation methods using 14 participants’ data to 
train and the remaining one to test. 

Detection Accuracy of Identifying Foot-Ground Contact 
Periods. The collected videos were processed using the method 
described in Section 5.1 and we frst evaluated the performance 
of identifying foot-ground contact periods using the formula de-
fned above. The detection accuracy is 90.91%, indicating that our 
method can detect the majority of foot-ground contact periods from 
recorded data. 

Within-User Evaluation Results. Results of the within-user 
detection accuracy for 24 ground surfaces are shown in Fig. 10 (a). 
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Figure 8: 24 kinds of ground surfaces that were selected for the user study. 15 of them are indoor, while the other 9 surfaces are 
outdoor surfaces. Based on their characteristics, these ground surfaces are divided into fve categories: rough, smooth, hard, 
discontinuous, and granular. 
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Figure 9: Five examples of how LaserShoes can be worn on shoes of diferent styles: (a) Snow boots; (b) Ankle boots; (c) Running 
shoes; (d) Canvas shoes; (e) Sneakers. 

The average classifcation accuracy of the 24 ground surfaces is 
86.93%, with the recall of 87.17% (�� = 10.09), the precision of 
85.82% (�� = 13.57) and the F1 score of 85.94% (�� = 10.59). For 15 
indoor surfaces, the average classifcation accuracy is 91.53%, with 
the recall of 90.60% (�� = 9.62), the precision of 92.48% (�� = 7.23) 
and the F1 score of 91.23% (�� = 7.06), while for 9 outdoor surfaces, 
the average classifcation accuracy is 78.86%, with the recall of 
81.46% (�� = 8.07), the precision of 74.73% (�� = 14.39) and the 
F1 score of 77.13% (�� = 9.58). Indoor surface detection is more 
accurate than outdoor surface detection. The reason for this could 
be that the light condition outside is less stable than it is indoors 
due to changes in intensity and angle of sunlight. This may reduce 
the quality of collected images, resulting in poor detection results. 

Besides, we also evaluated the detection accuracy of surfaces 
with diferent characteristics and the results are shown in Table 5. 
The results show that rough surfaces have the highest accuracy and 
the lowest standard deviation among the fve surface groups with 
varying characteristics. This makes sense because the microstruc-
ture of rough surfaces is more complex, resulting in more subtle 
patterns. Furthermore, discontinuous surfaces have the lowest av-
erage accuracy and a large standard deviation.

Cross-User Evaluation Results. For cross-user evaluation, 
the detection results are shown in Fig. 10 (b). The average classif-
cation accuracy of the cross-user model is 80.57%, with the recall 

of 80.36% (�� = 10.48), the precision of 78.32% (�� = 17.62) and 
the F1 score of 78.73% (�� = 13.86). For indoors and outdoors, the 
average classifcation accuracy are 83.22% and 73.13%, with the 
recalls of 85.48% (�� = 8.95) and 71.85% (�� = 6.56), the precision 
of 87.79% (�� = 10.00) and 62.54% (�� = 16.21), and the F1 scores 
of 86.39% (�� = 8.45) and 65.97% (�� = 11.53), respectively. In con-
trast to within-user results, classifcation accuracy decreases in the 
cross-user evaluation. This could be due to the fact that participants 
were wearing diferent shoes in the study, which caused diferent 
distances between the image sensor and ground surfaces. Further-
more, diferent foot postures of participants when their feet come 
into contact with ground surfaces contribute to a decrease in accu-
racy. Some participants’ feet were in aversion, while others were 
in inversion or in neutral positions. These diferent foot postures 
(shown in Fig. 11) cause a distance change between the image sensor 
and ground surfaces. The distance diferences result in diferently 
formed speckle patterns and thus variance between training and 
test datasets – the same type of ground surface may correspond to 
multiple speckle patterns. This variance may decrease the accuracy 
of the cross-user evaluation. And indoor detection, like within-user 
results, outperformed outdoor detection. 

We also tested the performance of the cross-user model for fve 
groups of surfaces with diferent characteristics. The results are 
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Figure 10: The confusion matrices of two trained classifcation models of the 24 ground surfaces. (a) Classifcation results using 
a within-user model. (b) Classifcation results using a cross-user model. 

Table 5: Average Accuracy (%) and SD results of the within-user model and cross-user model for fve surface characteristics. 

Rough Smooth Hard Discontinuous Granular 

Within-user 91.77 ± 6.92 86.57 ± 12.98 84.03 ± 7.66 83.40 ± 11.87 85.33 ± 9.91 
Cross-user 79.93 ± 9.67 87.04 ± 10.79 82.98 ± 11.00 72.42 ± 4.41 77.24 ± 8.87 

Table 6: Ground surface classifcation results in diferent lighting conditions. 

Lighting Conditions Indoor-with-light Indoor-without-light Outdoor-at-daytime Outdoor-at-dusk Outdoor-at-night 

Accuracy (%) 90.05 88.99 71.85 90.94 87.69 

shown in Table 5, which indicates that compared to within-user 
results, detection accuracy did not change a lot for smooth and hard 
surfaces. However, for rough, discontinuous, and granular surfaces, 
there is a large decrease. The reason may be that surfaces with 

a b c

Figure 11: Three types of foot postures. (a) Eversion; (b) Neu-
trality; (c) Inversion. 

complex microstructure amplifed the diference in participants’ 
foot postures, resulting in larger diferences of speckle patterns 
belonging to the same type of ground surfaces. 

Visually Similar Ground Surfaces. Among our selected ground 
surfaces, light-colored wood and artifcial fooring look very similar, 
which are not easy to distinguish by conventional RGB cameras. 
The results shown in Fig. 10 reveal that in both within-user and 
cross-user conditions, these two visually similar surfaces can be 
distinguished from the other one with LaserShoes. 

6.2 Supplementary Investigation 
Given the length of the primary data collection, the supplementary 
study is not conducted on the same day to avoid the fatigue of 
participants. 12 participants took part in our supplementary studies. 
The basic procedure was the same as the main study procedure. We 
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fnally collected 19,319, 4,250, and, 41,005 1.5s video sessions for 
each study, respectively. 

6.2.1 Dry, wet, and icy surfaces. In outdoor settings, ground sur-
faces could be dry, wet, or icy due to diferent types of weather. This 
may pose a potential danger to pedestrians. Thus, the sensing capa-
bility of LaserShoes to identify ground surface conditions could have 
real-world uses. We conducted experiments to classify ground sur-
face conditions on nine types of outdoor surfaces, shown in Fig. 8, 
under three conditions (i.e, dry, wet, and icy). For the wet condition, 
we poured water on the ground while for the icy condition, we put 
crushed ice on the ground. We conducted two evaluations in this 
study. We treated each combination of surface and condition as 
a separate label (27 in total) in the frst validation. In the second 
evaluation, we combined all of the surfaces of the icy condition 
into one label (19 in total). The detailed results are shown in Fig. 12. 
In the frst evaluation, the detection model has a 62.89% recall, a 
66.06% precision, and a 59.91% F1. In the second evaluation, after 
merging icy surfaces, the detection model has a 76.06% recall, a 
76.75% precision, and a 74.29% F1. These results show the feasibility 
of LaserShoes detecting ground surface conditions in real-world 
applications to improve pedestrian safety. 

6.2.2 Sand surfaces with diferent grain sizes. Even when the mate-
rial is the same, the physical state of the material (e.g., graininess, 
looseness) can vary. We also investigated how LaserShoes could 
perform fner-grained ground surface material sensing. Participants 
were asked to walk on three diferent types of sand surfaces with 
the same procedure as the main study. To be more specifc, we 
assess the classifcation performance using data collected on sand 
surfaces with sands of three diferent grain sizes (i.e., small, medium, 
and large). The classifcation accuracy for the sand types is 92.28% 
with an 87.60% recall, a 95.56% precision, and a 90.59% F1, which 
indicates that LaserShoes could identify the same type of surfaces 
with diferent fne-grained surface geometries. 

6.2.3 Diferent lighting conditions. Lighting conditions may afect 
the quality of speckle images and thus the ground surface detec-
tion performance. To test the robustness of LaserShoes against this 
factor, we collected data in fve diferent lighting conditions. These 
conditions included two for the 15 indoor surfaces and three for 
the 9 outdoor surfaces, and are listed as follows: 

• Indoor-with-light: lamps (cold light source) on in a room. 
• Indoor-without-light: lamps of in a room. 
• Outdoor-at-daytime: much sunlight outdoors at daytime. 
• Outdoor-at-dusk: little sunlight outdoors at dusk. 
• Outdoor-at-night: no sunlight, with streetlamps on, outdoors 
at night. 

We trained fve classifcation models, each using the data col-
lected under diferent lighting conditions. Table 6 shows the average 
surface classifcation accuracies for the fve diferent lighting con-
ditions. The results demonstrate that, with the exception of the 
outdoor-at-daytime condition, the classifcation accuracy for all 
other conditions was above 87%. This indicates the robustness of 
LaserShoes, except under lighting conditions with strong ambient 
light, which requires further improvement. 

7 APPLICATION 
To demonstrate our system as a real-time assistant in many use 
cases by sensing ground surfaces, we developed fve application 
examples as shown in Fig. 14. 

7.1 Personal Running Assistant 
A considerable amount of research has been dedicated to assisting 
and promoting running activity. For instance, sensing techniques 
have been developed to help users understand their body (e.g., track-
ing kinesiological data about feet and gait) [59], some data-driven 
interfaces are designed to motivate users’ actions [34], while others 
are proposed to support natural navigation running in unknown 
places [28, 46]. Some previous works have taken the form of smart 
shoes, which people envision as being capable of adapting to dif-
ferent terrains to improve runner performance and health in the 
future, becoming an active support tool [33]. 

However, there are currently few smart shoes that can yield 
rich terrain surface information that one can use to correlate with 
running experience. For example, a cross-country runner who runs 
over a variety of ground surfaces of varying difculty levels may 
want to understand how running performance is related to the 
ground surface. Our body has diferent reactions and biomechanical 
demands with diferent types of ground [3, 15]. For instance, the 
degree of compliance of the ground surface will impact the speed of 
energy transfer between people’s foot and ground surface, resulting 
in diferent foot-ground contact time and energy consumption 
[23, 32]. In this case, LaserShoes could be used to support running 
analysis and yield guidance with fne granularity. Fig. 14 (a) shows 
an example of using LaserShoes to support running analysis. During 
the running trial, the user ran over various ground surfaces such 
as carpet, rubber, asphalt, and discontinuous brick, and LaserShoes 
detected these diferent surfaces. As a result, the detection results 
could be used to generate reports for each surface, such as time, 
speed, and energy consumption. 

7.2 Gait Analysis 
Gait parameters variability is an important diagnostic indicator of 
health [41], related to both the quality of life and mortality [51], cor-
relating with the rehabilitation degree of specifc joint injuries [56], 
and thus has received signifcant attention to both clinicians and 
researchers. However, the terrain type can signifcantly infuence 
the gait pattern [31, 50], which underscores the need to consider 
diferent terrain types while analyzing. Our LaserShoes can be used 
to support such analysis. Specifcally, as shown in Fig. 14 (b), when 
the user steps on soft surfaces like sand and mud, her gait will 
change due to the softness of the surface. However, when stepping 
on hard surfaces like asphalt, the user can maintain a normal gait. 
We can incorporate a simple IMU module into our LaserShoes to 
monitor users’ gait information, as well as use LaserShoes to col-
lect terrain ground surface information. In this case, the additional 
information can be leveraged to examine how gait is changed on 
various types of ground surfaces, providing insights that could be 
of use in medical applications. 
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Figure 12: The confusion matrices of two trained classifcation models to identify dry, wet, and icy ground surfaces. (a) Classif-
cation results using the model that diferentiates various icy ground surfaces; (b) Classifcation results using the model that 
merges various icy ground surfaces into one category. 

a b c d e

Figure 13: Five kinds of lighting conditions in which we collected data. (a) Indoor-with-light; (b) Indoor-without-light; (c) Outdoor-
at-daytime; (d) Outdoor-at-dusk; (e) Outdoor-at-night. 

7.3 Cleaning Equipment Auto-Control 
There is a wide variety of cleaning equipment (e.g., UnoClean 1), de-
signed for indoor and outdoor applications. Many advanced clean-
ing machines have numerous cleaning modes (e.g., vacuuming 
power, whether water is used) for various types of ground surface 
and dirt cleaning needs. For example, the cleaning mode used for 
grass cannot be directly applied to real leather carpets. A high-
power mode will likely damage the carpet. In this case, users must 
frequently change the working mode due to the various physical 
forms and chemical compositions of the ground surface. As the 
variety of decoration materials in our living environments grows, 
automatically switching the cleaning machine’s working mode 
based on the foor material can provide much convenience and 
reduce errors in our daily cleaning tasks. As shown in Fig. 14 (c), if 
1https://www.unoclean.com/ 

the user wears LaserShoes while cleaning, our system detects the 
material of the foor the user is walking on, such as ceramic, carpet, 
or wood, and automatically changes the cleaning mode of the ma-
chine. Similar to foor cleaning equipment, other types of mobile 
tools (e.g., pressure washer, leaf blower) or even smart devices (e.g., 
smartphones, AR/VR headsets) could also leverage ground surface 
as side-channel information to improve their performances. 

7.4 Coarse Navigation 
Navigation tools have greatly facilitated our lives. Even with GPS 
navigation, people might get disoriented in outdoor places with 
complex layouts or crowded areas. GPS also does not work in indoor 
settings such as museums, airports, and shopping malls [5]. These 
environments often have foors made of various materials. For 
example, diferent stores in the mall may have diferent decorative 
foor materials. The route for outdoor running may include grass, 

https://www.unoclean.com/
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Figure 14: Five applications using LaserShoes. (a) Personal running assistant: LaserShoes can detect ground surface that users 
are currently running on, and these detection results can be used to generate running analysis reports for each surface; (b) Gait 
analysis on diferent terrains: When combined with gait analysis sensors (e.g., IMU), LaserShoes can help users to detect changes 
in gait on diferent terrains; (c) Cleaning equipment auto-control: When a user is cleaning, LaserShoes will detect on which 
surface the user is stepping and the working mode of the cleaning equipment can be changed automatically according to the 
detection feedback; (d) Coarse navigation: LaserShoes can provide users coarse navigation. For example, when the detection 
feedback of LaserShoes is brick, it means that the user is walking in the proper way. However, if the feedback changes to 
asphalt that is unexpected, it means the user may be walking in the wrong, or a dangerous way, and some alerts will be given to 
the user; (e) Daily activity recognition through localization: The space in which a user is staying can be recognized by using 
LaserShoes to detect ground surface types. For instance, detecting carpet is likely to correspond to staying in the living room 
for entertainment, while detecting wood may mean staying in the study and working. Thus, based on space recognition, we can 
calculate how much time the user spends in various spaces and roughly achieve an analysis of the user’s daily activities. 

gravel, asphalt, and other surfaces. LaserShoes can infer coarse user 
locations from ground surfaces and alert users when they are of-
course. As shown in Fig. 14 (d), the proper route for the user is the 
sidewalk made of bricks. However, if LaserShoes detects that the 
current surface is asphalt, its user is likely on the wrong route and 
will receive an alert. 

The negation system can also be applied to accessibility for 
which we envision LaserShoes to work in concert with accessible 
infrastructure in urban environments. Visually impaired individ-
uals could rely on additional information (e.g., tactile feedback of 
ground surfaces) to acquire spatial awareness [63]. Previous re-
search attempted to design physical tactile maps to enable users 
to access information with audio [22, 27, 44, 52], tactile [58], and a 
combination of tactile and audio feedback [18, 25, 39, 64]. Instead 
of relying solely on the tactile sensation of users’ feet (e.g., tactile 
ground surfaces, blind pathways), LaserShoes could sense ground 
surfaces for users, providing an alternative solution that could take 
advantage of sensory substitution techniques – converting ground 
textures into sounds to guide visually impaired individuals to stay 
on track of pathways that are safe for them. 

7.5 Daily Activity Recognition through 
Localization 

Recognized activities provide rich contextual information to sup-
port natural human-computer interactions. Statistical analysis of a 

person’s behavior in an environmental space helps with the infer-
ence for the design of the space and the user’s lifestyle. For instance, 
logged activity data can be used to help older adults to encourage 
healthy daily routines and active lifestyles, and to monitor chronic 
health conditions and enjoyment [29]. Among all types of in-home 
contextual information, the ground surface texture is often unique 
to living spaces of diferent functions. For example, the bathroom 
foor is typically made of easy-to-clean and waterproof tile surfaces, 
the bedroom foor soft carpets or rugs, and the living room wood 
or plastic foor materials. In this case, we can use LaserShoes to 
recognize the ground texture and determine which space the user 
is in to coarsely infer their activities. As shown in Fig. 14 (e), when 
LaserShoes detects carpet, the user is more likely to be relaxing in 
the living room. However, when LaserShoes detects wood foors, 
the user is more likely to be working in the study. We can, for exam-
ple, alert users when they spend too much time on the toilet (e.g., 
playing with smartphones), which is detrimental to their health. 

8 DISCUSSION 

8.1 Efcacy of Data Pre-processing 
Although machine learning models are somewhat resilient to noisy 
data points, they require more computation power during inference. 
To alleviate the such burden, a denoising process is commonly 
performed prior to feeding into machine learning models [68, 69]. In 
our case, if we do not remove blurry images, the time consumption 
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for inference will be large, which is opposite to our goal of real-
time prediction. Even if we only extract one image by cropping one 
raw frame and do not perform data pre-processing, the number 
of images from one video session fed into the classifcation model 
will be 90. However, the average number of images fed into the 
classifcation model after data pre-processing is 11, indicating that 
our data pre-processing step can signifcantly reduce computation 
costs during inference. 
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w/ glass

ceramic concretecloth
90

60

45

30

15
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Figure 15: (a) Illustration of early alert by sensing ground 
surfaces ahead of users. When facing toward the front with 
the angles of 60, 45, 30, and 15 degree, LaserShoes could still 
capture discernable speckle patterns; (b) Example speckle 
images captured on three diferent surfaces with and without 
a transparent glass coating layer. 

Further, to evaluate the infuence of the data pre-processing step 
in terms of ground surface classifcation performance, we conducted 
experiments on data collected from one of our participants. The 
experiment procedure is the same as our main study except that 
we replaced the pre-processing part with cropping one 256 × 256 
image from each frame. For the classifcation model trained with 
raw data, the recall, precision, and F1 are 64.25%, 67.22%, and 60.60%, 
respectively. For the classifcation model trained with data after 
pre-processing, the recall, precision, and F1 are 88.45%, 88.05%, and 
87.60%, respectively. Therefore, conducting our data pre-processing 
step can achieve better performance compared to using raw data. 

8.2 Avoid Overftting 
Overftting is a common issue in deep learning applications, espe-
cially when the number of training samples is small. To prevent the 
deep model in our system from overftting, common techniques, in-
cluding data augmentation, and normalization, were applied during 
the training process. Besides, as described in Section 5.1.2, cropping 
a raw speckle image to generate multiple smaller input images 
helps increase the number of training samples. Moreover, we set 
the number of training epochs of the model to 150, after we con-
ducted experiments using a validation set of data and found that the 
training loss converged while the validation loss did not degrade at 
around 150 epochs. The evaluation results with high classifcation 
accuracies, especially those from the cross-user study, demonstrate 
efective mitigation of overftting. 

8.3 Power Consumption 
There are three main parts that consume power in our system: The 
laser emitter with a switch module (51.3 �� ), the image sensor 
(1047.9 �� ), and the Raspberry Pi (2643.6 �� ). LaserShoes has a
relatively high total consumption, which prevents it from being 

continuously used for a long time without battery exchange. In 
the future, to reduce the power consumption on Raspberry Pi, the 
collected data could be transferred to a cloud server via low-power 
wireless communications. We could also design a custom circuit 
and reduce power consumption by removing components that are 
not in use and using low-power MCU and communication modules. 
Besides, the current image sensor captures images of 1280 × 720 
pixels for efcient data collection. However, in live classifcation, 
the input images need not be that large, possibly taken by smaller 
image sensors to preserve power. 

8.4 Sense Surfaces ahead for Early Alert 
Since LaserShoes uses images captured when a user’s foot is in
contact with the ground, our system in its current implementation 
could not predict ground surface conditions in advance, limiting use 
scenarios such as alerts of dangerous surface conditions. To achieve 
this, LaserShoes should be able to leverage in-fight images. To
mitigate the motion efect, we could add an IMU sensor to measure 
motion speed and implement deblurring methods [9, 17]. Image 
sensors with a short exposure time could also help to obtain clear 
images when the user’s foot is moving in the air. Second, we could 
tilt up our device to sense ground surfaces in front of a user for 
early alerts (Fig. 15 (a)). We performed a test to see if our sensing 
system could still function with our device tilted up, pointing to 
the front of a shoe. Results indicate discernable speckle patterns up 
to 45 degrees for the three types of surfaces we tested (Fig. 15 (b)). 
However, it merits future research to investigate how this sensor 
confguration could work in real-use cases powered by real-time 
signal processing and classifcation. 

8.5 Loose or Transparent Ground Surfaces 
In practice, we discover that LaserShoes cannot capture frames
with high-quality speckle patterns on loose ground surfaces such 
as grass for insufcient refected light intensity. We suspect that 
grass surfaces difused or absorbed most of the laser energy due 
to their layered surface micro geometries. Besides, for transparent 
ground surfaces such as glass (Fig. 15 (b)), the refected laser is 
also weakened. Though speckle patterns can still be formed on 
transparent ground surfaces, information on the textured surfaces 
underneath the transparent coating layer is much deluded, resulting 
in less discernable speckle patterns than ones induced on surfaces 
without the transparent coating laser. 
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Figure 16: Illustration of two alternative designs with opti-
mized form factors. (a) Attaching the system onto a height-
adjustable mechanical module; (b) Integrating the system 
into a smart sole. 
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8.6 LaserShoes under Intense Ambient Light 
When the ambient light is too intense, the image sensor receives too 
much ambient light, which lowers the signal-to-noise ratio (SNR). 
As a result, the speckle patterns become blurry or invisible under 
some outdoor conditions in our study. To mitigate this issue, future 
systems could leverage optical flters. Given that laser light is polar-
ized and has a narrow frequency band, we could include a polarizer 
or a band-pass flter between ground surfaces and the image sensor. 
These flters could make the laser a dominant signal on captured 
laser speckle images that have sufcient SNR for classifcation. An-
other tactic to preserve SNR is to implement synchronous detection, 
with the image sensor and the laser in sync. Specifcally, we could 
leverage high-speed image sensors to take two consecutive photos 
with and without the laser turning on. The subtraction between 
these two consecutive photos should reveal little efect imposed 
by the ambient light which is relatively constant and therefore the 
efect could be subtracted out. 

8.7 Form Factor Optimization 
Our current implementation is relatively bulky. Furthermore, dif-
ferent image sensor heights, which are afected by shoe styles and 
foot postures, will reduce ground detection accuracy as discussed 
in Section 6.1.4. In the future, LaserShoes could be replicated with 
better form factor designs. 

One possible solution is to make the height of the image sensor 
consistent across shoe styles by adding a height-adjustable me-
chanical module as shown in Fig. 16 (a). This module could also 
mitigate variances introduced by the foot posture by asking users 
to calibrate and adjust LaserShoes before use. 

Since the diode of a laser emitter and the chip of an image sensor 
are both very small, they can be combined into a single integrated 
component that might be sufciently thin to be integrated on a 
smart sole under shoes as shown in Fig. 16 (b). In this case, the 
sensing distance is short and consistent, and the sensor is isolated 
from the ambient light when the sole is in contact with ground 
surfaces, all of which could result in an improved SNR that yields 
higher classifcation accuracies. 

9 CONCLUSION 
We present LaserShoes, a texture-sensing wearable system that 
detects ground surfaces using Laser Speckle Imaging. Our system 
can retroft shoes, and consists of a laser emitter that illuminates 
ground surfaces and an image sensor that records videos with laser 
speckles. The recorded videos frst pass through a pre-processing 
phase with which we extract input images from speckle images 
captured when a user’s foot is in contact with ground surfaces. Next, 
these input images are fed into a ResNet-18 classifcation model 
for surface type detection. We conducted a main study and three 
supplementary investigations to evaluate our system’s classifcation 
accuracy and robustness across various surface conditions and 
under diferent lighting conditions. We showed fve applications 
of LaserShoes to demonstrate its potential use cases. Finally, we 
discussed our evaluation results and future work needed to further 
improve our system. 
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A CONFIGURATION EXPERIMENT 

Table 1: Classifcation results of diferent wavelength-and-distance combinations. Accuracy greater than 98% are bolded. 

Wavelength (��) 

650 
(red) 

Distance (��) 

1 
3 
5 
7 
9 
11 
13 
15 

Accuracy (%) 

82.35 ± 2.15 
96.84 ± 1.97 
96.69 ± 0.97 
99.91 ± 0.34 
97.49 ± 1.55 
94.13 ± 2.14 
98.88 ± 1.19 
95.44 ± 1.84 

Wavelength (��) 

520 
(green) 

Distance (��) 

1 
3 
5 
7 
9 
11 
13 
15 

Accuracy (%) 

98.09 ± 1.53 
99.96 ± 0.23 
98.61 ± 1.29 
99.60 ± 0.67 
99.36 ± 0.79 
99.92 ± 0.32 
89.09 ± 0.55 
92.33 ± 1.72 

Wavelength (��) 

450 
(blue) 

Distance (��) 

1 
3 
5 
7 
9 
11 
13 
15 

Accuracy (%) 

96.60 ± 1.92 
67.48 ± 2.44 
91.92 ± 2.16 
99.69 ± 0.59 
97.76 ± 1.23 
94.56 ± 2.49 
98.20 ± 1.34 
83.69 ± 0.96 

Wavelength (��) 

405 
(purple) 

Distance (��) 

1 
3 
5 
7 
9 
11 
13 
15 

Accuracy (%) 

90.80 ± 2.51 
91.55 ± 1.82 
99.99 ± 0.13 
99.53 ± 0.85 
100.00 ± 0.00 
91.53 ± 2.48 
91.91 ± 0.34 
100.00 ± 0.00 
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